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ABSTRACT

Joseph Newton: Hydrogen Burning of 17O.

(Under the direction of Christian Iliadis.)

Classical novae are explosive binary systems involving the accretion of hydrogen rich material from

a main sequence star onto the surface of a white dwarf partner, reaching peak temperatures of T =

0.1-0.4 GK. Observed elemental abundances from the ejecta provide much needed constraints for the

modeling of these explosions. Novae are thought to be the most significant source of 15N and 17O

in the universe. The 17O(p,γ)18F and 17O(p,α)14N reactions have an important effect on nucleosyn-

thesis in novae, since they determine the creation and destruction of 17O and 18F, which produces

detectable γ-radiation. The dominant contributor to the 17O(p,α)14N reaction is a resonance at Elab
r

= 193 keV. The strength of this resonance has been measured and the results are presented. For the

17O(p,γ)18F reaction, the dominant contribution comes from the nonresonant direct capture process.

The literature direct capture cross sections currently differ by a factor of two. This cross section has

been measured in the current work and the results are also presented. New reaction rates have been

calculated with these measured cross sections using a new Monte Carlo technique and these new rates

have significantly reduced uncertainties compared to the current literature.
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”Remember, man, that you are dust

and to dust to you will return.”

Genesis 3:19
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1 Introduction

1.1 Classical Novae

Classical novae are binary stellar systems made up of a white dwarf that accretes hydrogen rich

material from a partner main sequence star. The slow rate of accretion onto the surface of the white

dwarf results in the system reaching degenerate conditions in which the accreted material is no longer

able to expand with increasing temperature. As this hydrogen rich material accumulates on the surface

of the white dwarf the density increases and hydrogen burning begins, resulting in an increased surface

temperature. Since the nuclear cross sections increase with increasing temperature and there is no

expansion of the accreted material to quench the burning, a thermonuclear runaway occurs leading

to an explosion [1]. Unlike type 1a supernovae, which are completely destroyed by the violence

of the explosion, a classical nova explosion does not destroy the parent white dwarf, allowing for

recurrence of the explosion. The period of recurrence is typically on the order of 104 - 105 years.

Classical novae are responsible for a very small fraction of the existent Galactic dust and therefore

they do not significantly affect the elemental abundances in the Galaxy. They are, however, thought

to be a significant source of certain isotopes, including 17O, 15N and 13C [2]. Chemical abundance

information is obtained from the spectral lines of the ejected material from classical novae for many of

the CNO elements (see Sec. 1.2). One very important isotope is 18F which β-decays, producing 511

keV γ-radiation that is currently detectable by satellites and the β-decay is one of the energy sources

that power the optical display.

Nuclear physics cross sections present crucial inputs to classical nova simulations. These models

have been significantly improved in recent years and present specialized tools for identifying which

specific reactions should be further investigated in the laboratory. By varying the current reaction rates

within the experimental uncertainties in the nova model input, the effects on the final isotopic abun-



dances can be simulated. Despite investigation of hundreds of nuclear reactions in nova simulations,

only a very small number of reactions significantly affect the final isotopic abundances of the ejected

material [2]. Two of these reactions include 17O(p,γ)18F and the competing 17O(p,α)14N reaction.

17O(p,γ)18F creates 18F, which is a major source of the detectable 511 keV γ-radiation in nova ejecta,

while 17O(p,α)14N is the final step in the CNO II cycle (see section 1.2). The goal of this project is

to enhance the current understanding of these two reaction rates by experimentally obtaining higher

precision measurements of their cross sections. This will improve nuclear physics inputs for the mod-

eling of classical novae and other stellar environments where the quality of nucleosynthesis results is

highly dependent upon the use of accurate reaction rates [2].

1.2 The CNO Cycles

A stellar environment consisting only of hydrogen and helium will burn hydrogen for energy

generation only through the pp chains. For second generation stars, like our sun, the hydrogen burning

region may contain nontrivial amounts of carbon, nitrogen and oxygen. These higher mass nuclei aid

in the burning of hydrogen in what are known as the CNO cycles. At stellar temperatures below 0.1

GK the CNO cycles consist of a total of four cycles known as the cold CNO cycles (Tab. 1.1). The first

three cold CNO cycles are illustrated in Fig. 1.1. Each of the four cold CNO cycles yields, effectively,

the same result as the pp chains; that is they convert four protons into one α-particle, two neutrinos

and two positrons, or symbolically 4H −→4He + 2ν + 2e+ [1]. Carbon, nitrogen and oxygen function

as catalysts and though their relative abundances may change from those at the formation of the star,

the total number of higher mass nuclei remains constant throughout the cold CNO cycles. The relative

abundances of these nuclei are highly sensitive to temperature because they depend on the reaction

rates of the proton captures involved.

The existence of four cycles comes about because, of the eight stable nuclei in the process which

can capture a proton, four of them have an open α-particle exit channel. The production of an α-

particle returns each chain to the start; however, if the reaction involves the emission of a γ-ray a

different cycle begins. Consider, for instance, hydrogen burning of 14N. The cold CNO I cycle is

completed with the 15N(p,α)12C reaction. If, instead, the reaction follows the 15N(p,γ)16O route, the

2



CNO I CNO II CNO III CNO IV

12C(p,γ)13N 14N(p,γ)15O 15N(p,γ)16O 16O(p,γ)17F

↓ ↓ ↓ ↓
13N(β+ν)13C 15O(β+ν)15N 16O(p,γ)17F 17F(β+ν)17O

↓ ↓ ↓ ↓
13C(p,γ)14N 15N(p,γ)16O 17F(β+ν)17O 17O(p,γ)18F

↓ ↓ ↓ ↓
14N(p,γ)15O 16O(p,γ)17F 17O(p,γ)18F 18F(β+ν)18O

↓ ↓ ↓ ↓
15O(β+ν)15N 17F(β+ν)17O 18F(β+ν)18O 18O(p,γ)19F

↓ ↓ ↓ ↓
15N(p,α)12C 17O(p,α)14N 18O(p,α)15N 19F(p,α)16O

Table 1.1: Cold CNO cycles I-IV: Each cycle converts four protons into one α, two neutrinos and two

positrons. The two 17O + p reactions are in red. Table concept was borrowed from [1].

CNO II cycle is entered. These two cycles operate simultaneously in the star and in about 1 out of

1000 operations of the cold CNO I cycle there will be a branch into the cold CNO II cycle.

There exists a branch point between the cold CNO II and CNO III cycles, involving the proton

capture of 17O. If the reaction proceeds through the 17O(p,α)14N path, then the cold CNO II cycle

will continue. However, if the 17O(p,γ)18F reaction occurs, the cold CNO III cycle is entered and

new nuclei, not reachable by the cold CNO I or CNO II cycle, can now be synthesized. The ratio

of these two reaction rates is highly energy dependent and will determine the 17O hydrogen burning

pathway. A great deal of uncertainty exists in the current literature for the rates of these two reactions,

particularly at the lowest stellar energies of T < 10 MK where it is not even certain which rate is larger.

The ultimate path followed by the cold CNO cycles will not be greatly affected by the branch point at

17O + p, since the cold CNO II cycle is so rarely entered. Furthermore, over the stellar temperature

range of interest, the 17O(p,α)14N reaction rate is two orders of magnitude greater than the rate of

17O(p,γ)18F. The final isotopic abundances of oxygen, however, may be greatly affected by the CNO

II and CNO III branch point, providing a crucial constraint on the stellar modeling of sites where the

CNO cycles are in operation.

3
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Figure 1.1: The cold CNO cycles I (black), II (blue) and III (red) with stable nuclei shaded. Dashed

lines indicate the reaction branch at 17O + p. The legend arrows representing the three nuclear reac-

tions are not to scale.

1.2.1 The Hot CNO Cycles

Classical novae burn hydrogen explosively at very high temperatures (T = 0.1-0.4 GK). At these

elevated temperatures the burning is described by the hot CNO cycles. These three cycles are illus-

trated in Fig. 1.2. While the first hot CNO cycle, HCNO I, is similar to the first cold CNO cycle, at

high temperatures 13N is more likely to capture a proton to form 14O than to undergo β-decay to form

13C. High nova temperatures also allow the reactions involved in this cycle to all occur much faster

than the β-decays of 14O and 15O, resulting in accumulation of 14O and 15O, the most abundantly

produced nuclides in the hot CNO cycles. The HCNO I cycle completes in ≈ 300 s, while the length

of a typical nova explosion is a few hundred seconds. This means that novae are not operating in

equilibrium [1].

The HCNO II and HCNO III cycles are critically important to the final isotopic abundances of

oxygen, since these cycles determine what happens to the initial 16O in the nova. There are several

possible ways to break out of these two cycles and into higher mass burning regions [1]. These break-

out possibilities are the reason that hundreds of reactions must be taken into account when simulating

classical novae. In order to further investigate the critical 17O(p,γ)18F and 17O(p,α)14N reaction

rates, it is helpful to be familiar with a few very important concepts in nuclear physics. The rest of

this chapter is dedicated to presenting the fundamental concepts in the calculation of reaction rates.
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Figure 1.2: The hot CNO cycles I (red), II (blue) and III (green) with stable nuclei shaded. Dashed

lines indicate the reaction branch at 17O + p. The black line representing the 17O(p,α)14N is not a part

of any of the three cycles. The legend arrows representing the three nuclear reactions are not to scale.
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1.3 Reaction Rates and Cross Sections

A commonly used quantity in nuclear astrophysics is the reaction rate per particle pair, < σv >,

for a specific set of nuclei. Knowledge of the reaction rate is necessary for determining the direction

of stellar nucleosynthesis and the resulting isotopic abundances of specific elements. The purpose of

this section is to summarize, following the presentation of Ref. [1], the major concepts involved in

the calculations of the reaction rate for a given pair of nuclei.

The reaction rate per particle pair for a thermonuclear environment is given by

< σv >=

√

8

πµ

1

(kT )3/2

∫ ∞

0
Eσ(E)e−E/kT dE, (1.1)

where µ is the reduced mass of the projectile and target; k is Boltzmann’s constant; T is the tempera-

ture; E is the relative energy between projectile and target and σ(E) is the cross section of the reaction

of interest. The cross section describes the probability of the reaction occurring given the relative

energy between the projectile and target. The factor e−E/kT originates from the Maxwell-Boltzmann

distribution of relative particle energies in a thermonuclear environment. The form of the cross sec-

tion may be different depending on the reaction specifics, but regardless of the description of the cross

section one may always construct the astrophysical S-factor, which is defined by

σ(E) ≡ 1

E
e−2πηS(E), (1.2)

where η ≡
√

µ
2E ZpZt

e2

h̄ is the Sommerfeld parameter and Zp, Zt are the charge of the projectile

and target nucleus, respectively. The known major energy dependencies of the cross section have

been separated out, leaving only the S-factor. The 1
E term describes a semi-classical cross section

[3], and the e−2πη term, called the Gamow factor, describes the s-wave transmission through the

Coulomb barrier at very low bombarding energies [1]. The remaining S-factor is significantly less

energy dependent than the cross section and contains all of the nuclear physics. It will be a much

smoother varying curve than the cross section and thus more easily extrapolated to energies of stellar

importance from energies where experimental measurements can be made. Combining Eqs. 1.1 and
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1.2 gives the following form for the thermonuclear reaction rate per particle pair:

< σv >=

√

8

πµ

1

(kT )3/2

∫ ∞

0
e−2πηS(E)e−E/kT dE. (1.3)

1.3.1 Nonresonant Cross Sections

Since the major energy dependence of the cross section has been removed to define the S-factor,

it is often the case that S(E) may be assumed to be constant, significantly simplifying the integral in

Eq. 1.3 and the resultant form of the reaction rate. If S(E) is approximated as a constant, S0, the form

of the reaction rate becomes

< σv >=

√

8

πµ

1

(kT )3/2
S0

∫ ∞

0
e−2πηe−E/kT dE. (1.4)

The integrand now consists of two energy dependent terms which are illustrated in Fig. 1.3. The

Maxwell Boltzmann factor, which is ∝ e−E/kT , describes the energy distribution of the particles

in a thermonuclear environment and the Gamow factor, e−2πη, is proportional to the probability of

tunneling through the Coulomb barrier. The product of these two terms forms a peak, known as

the Gamow peak, which describes the effective energy region where the thermonuclear reactions

occur. The effective energy region is shifted to a higher energy than the average thermal energy of

the particles, since the probability of interaction is vanishingly small where the energy distribution

of the particles peaks. The result of the interplay between the increasing cross section at very high

energies and the very low thermonuclear energies of most of the particles is that the bulk of the nuclear

reactions will occur where the Gamow peak is a maximum.

Approximating the Gamow peak with a Gaussian allows for a position and width of the Gamow

peak to be defined, which results in an effective analytical tool for describing the energy burning

region of nonresonant thermonuclear reactions. This is derived by constructing a Gaussian curve

which has the same amplitude and curvature at the maximum as the Gamow peak. That is

exp

[

− E

kT
− b√

E

]

= Imax exp

[

−(E − E0)
2

(

∆

2

)2

]

(1.5)
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Figure 1.3: The Gamow factor (red curve), the Maxwell-Boltzmann factor (black curve) and the

resultant Gamow peak (blue curve) for the reaction 17O + p at a stellar temperature of 0.4 GK

where b ≡
√

2µπe2Z1Z2

h̄ and Imax is the amplitude of the Gaussian which is to be matched with the

amplitude of the Gamow peak. The position of the maximum and the 1/e width of the Gaussian are

given by E0 and ∆, respectively. To find E0 it is necessary to set the first derivative of the Gamow

peak to zero and solve for the energy [1]

d

dE

[

exp

(

− E

kT
− b√

E

)]

E=E0

= 0

[(

− 1

kT
+

b

2E
3

2

)

exp

(

− E

kT
− b√

E

)]

E=E0

= 0.

(1.6)

This gives

1

kT
=

b

2E
3

2

0

E0 =

(

bkT

2

)
2

3

. (1.7)
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Solving for the width of the Gaussian requires matching the second derivatives of the two peaks at the

maximum, E0. This gives

d2

dE2

[

exp

(

− E

kT
− b√

E

)]

E=E0

=
d2

dE2

(

Imax exp

[

−(E − E0)
2

(

∆

2

)2

])

E=E0

.

(1.8)

Now consider the following:

d2

dE2

[

ef(E)
]

=
d

dE

[

f ′(E)ef(E)
]

= f ′′(E)ef(E) + f ′(E)f ′(E)ef(E). (1.9)

Since the second derivative is to be evaluated at E = E0 for both functions and E0 is defined as the

maximum of both curves, the first derivative of each function evaluated at E = E0 will be 0. That is

d

dE
ef(E)

∣

∣

∣

E=E0

= f ′(E)ef(E)
∣

∣

∣

E=E0

= 0. (1.10)

This means that f ′(E)f ′(E)ef(E)
∣

∣

E=E0

= 0 for both the constructed Gaussian and the Gamow peak

functions. This simplifies the calculations for both the Gamow peak

d2

dE2

[

exp

(

− E

kT
− b√

E

)]

E=E0

=
d

dE

(

− 1

kT

b

2E
3

2

)

exp

(−E

kT
− b√

E

)

E=E0

=
−3b

4E
5

2

0

exp

(−E0

kT
− b√

E0

)

(1.11)

and the Gaussian approximation

d2

dE2

(

Imax exp

[

−(E − E0)
2

(

∆

2

)2

])

E=E0

=

(

d

dE

[

2(E − E0)
(

∆

2

)2

]

× Imax exp

[

−(E − E0)
2

(

∆

2

)2

])

E=E0

=
−8

∆2
Imax. (1.12)
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Combining Eqs. 1.8, 1.11 and 1.12 and gives

−3b

4E
5

2

0

exp

(−E0

kT
− b√

E0

)

=
−8

∆2
Imax;

−3

4kTE0
=

−8

∆2
;

∆ =
4√
3

√

kTE0, (1.13)

where b =
2E

3
2

0

kT is substituted, as derived from Eq. 1.7, and Imax = exp
(

−E0

kT − b√
E0

)

since the

height and position of the two peaks have been matched. Using Eqs. 1.7 and 1.13, E0 and ∆ may

now be found numerically, in units of MeV [1]:

E0 = 0.1220

[

mpmt

mp + mt
(ZpZtT9)

2

]
1

3

(1.14)

and

∆ = 0.2368

(

mpmt

mp + mt
(ZpZt)

2 T 5
9

)
1

6

. (1.15)

The temperature in units of GK is denoted by T9. The range E0 ±
1
2∆ describes the energy region in

which the majority of non-resonant nuclear reactions will occur. This range can be used to determine

the most important energy regions to explore experimentally. It will not always be appropriate to

approximate the S-factor as a constant, but for nonresonant reactions the cross section will always be

slowly varying and can therefore be expanded in a Taylor series [1, 3].

1.3.2 Narrow Resonance Cross Sections

Another simplification of the thermonuclear reaction rate formula results if the thermonuclear

reactions of interest proceed through narrow resonances. A resonance is considered narrow if the

partial widths, Γi, can be considered constant across the width of the resonance and approximated

by their values at E = Er [1]. Partial widths and their effect on the reaction rate will be discussed in

more detail in Chap. 2. In the case of a narrow resonance, the cross section can be described by the

10



Breit-Wigner formula, giving

σ(E) =
λ2

4π

(2J + 1)(1 + δtp)

(2jt + 1)(2jp + 1)

ΓaΓb

(Er − E)2 + Γ2/4
, (1.16)

where λ is the de Broglie wavelength; Γa and Γb are the partial widths of the resonance entrance and

exit channels, respectively and Γ is the total width of the resonance. These are all in the center of

mass frame. The spins of the projectile, target and resonance are given by jp, jt and J, respectively.

The energy of the resonance, in the center of mass system, is given by Er. Combining Eqs. 1.16 and

1.1 and the relation λ2 = (2πh̄)2

2µE gives, for the narrow resonant reaction rate,

< σv >=

√
2πh̄2

(µkT )
3

2

∫ ∞

0
ω

ΓaΓb

(Er − E)2 + Γ2/4
e−

E
kT dE, (1.17)

where ω ≡ (2J+1)(1+δpt)
(2jp+1)(2jt+1) . Since this is a narrow resonance, symmetric around E = Er, it will not

change the result of the above integration to integrate from a lower limit of −∞ rather than from 0.

Using the following identity:
∫ ∞

−∞

a

(Er − E)2 + a2
dE = π, (1.18)

the contribution to the reaction rate from a single narrow resonance is simplified to the following:

< σv >=

(

2π

µkT

)
3

2

h̄2ωγe−
Er
kT , (1.19)

where γ ≡ ΓaΓb

Γ
. The product of ω and γ is known as the resonance strength. Since a narrow

resonance is an isolated peak in the cross section, the contribution to the total reaction rate from

a single narrow resonance will be unaffected by the existence of other narrow resonances. Thus,

in an environment where the cross section is dominated by several narrow resonances, the integral

will effectively identify each resonance separately and the total narrow resonant contribution to the

reaction rate will be an incoherent sum over these individual resonances, resulting in

< σv >nr=

(

2π

µkT

)
3

2

h̄2
∑

i

(ωγ)ie
− Ei

kT . (1.20)
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At certain temperatures, this narrow resonant contribution will dominate the total reaction rate and all

that is necessary for a simple calculation of the the total reaction rate is a list of the resonance energies

and their associated strengths, ωγ.

It is interesting to note the exponential term in the narrow resonant reaction rate formula. It is clear

that lower energy resonances will be favored. However, these resonances are typically weak, since

the incident particle must tunnel through the Coulomb barrier and this tunneling probability drops

exponentially with decreasing energy (see Eq. 1.4). This creates an interplay between the Coulomb

barrier and the exponential, which favor higher and lower energy resonances, respectively. This will

be discussed in depth in Chap. 2. As a result of the very small resonance strengths, the low energy

resonances are often extremely difficult, if not impossible, to measure with current technology. At

certain temperatures, the contribution to the total reaction rate may be completely dominated by one

or two of these low-energy resonances and it is often the case that the largest contribution to the total

uncertainty for a given reaction rate in a given temperature range comes from an unmeasured or very

uncertain low energy resonance strength.

1.3.3 Broad Resonance Cross Sections

Often when calculating reaction rates, the energy dependence of the partial widths must be in-

cluded explicitly. If this is the case, the narrow resonance formalism presented in Sec. 1.3.2 is not

sufficient to properly calculate the contribution of this resonance to the reaction rate. If the energy

dependence of a resonance becomes important, it is necessary to integrate the cross section of that

resonance to determine its contribution to the reaction rate. The cross section for a broad resonance

can be described by the one-level Breit-Wigner formula [1]

σBW (E) =
πh̄2ω

2µE

Γa(E)Γb(E + Q − Ef )

(Er − E)2 + 1
4Γ(E)2

, (1.21)

which is the same as Eq. 1.16 with the energy dependence of the partial widths indicated. The energy

dependence of the particle partial width may be approximated as Γi(E) ≈ Pi(E), where P(E), the

penetration factor, represents the transmission probability of s-wave particles through the Coulomb

and centripetal barriers of the nucleus and should be numerically calculated. The γ-ray partial width

12



is approximated as Γγ ≈ E2L+1
γ , where Eγ is the energy and L is the multipolarity of the emitted

γ-ray. Substituting these approximations for the partial widths into Eq. 1.21 gives [1]

σBW (E) =
πh̄2ω

2µE

Pa(E)
Pa(Er)Γa(Er)

Pb(E+Q−Ef )
Pb(Er+Q−Ef )Γb(E + Q − Ef )

(Er − E)2 + 1
4Γ(E)2

, (1.22)

for reactions involving particle emission. For reactions involving photon emission, like 17O(p,γ)18F ,

the cross section becomes:

σBW (E) =
πh̄2ω

2µE

Pa(E)
Pa(Er)Γa(Er)

[

(E+Q−Ef )
(Er+Q−Ef )

]2L+1
Γγ(E + Q − Ef )

(Er − E)2 + 1
4Γ(E)2

. (1.23)

The cross section can then be integrated to determine the single resonance contribution to the reaction

rate. This is given by [1]

< σv >=
√

2π
ωh̄2

(µkT )
3

2

∫ ∞

0
exp

(−E

kT

)

Γa(E)Γb(E + Q − Ef )

(Er − E)2 + 1
4Γ(E)2

dE. (1.24)

With Eq. 1.24 it is now possible to numerically integrate the reaction rate contribution for a resonance

which has significant energy dependence in the cross section. Explicit integration of the cross section

to calculate the reaction rate is always a valid procedure but is not always necessary, as in the case of a

narrow resonance. Comparing the integrated cross section with the result of the narrow resonant form

of the reaction rate contribution for a specific resonance allows one to determine whether the narrow

resonance approximation is valid near a specific temperature, or whether it is necessary to numerically

integrate.

In the case of subthreshold resonances (Ecm
r < 0), the calculation of the proton partial width

requires the spectroscopic factor, C2S, and the single particle reduced width, θ2
sp [4]. The procedure

for calculating θ2
sp can be found in Ref. [4]. The spectroscopic factor is an experimentally measured

quantity that can often be found in the literature and is discussed in detail in App. A.1. These quantities

are combined to yield the particle partial width:

Γp(E) =
2h̄2

µR2
P (E)C2Sθ2

sp. (1.25)
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The penetration factor, P(E), gives the major energy dependence of the partial width. This form of

the partial width can be used to find the contribution to the reaction rate arising from the tail of a

subthreshold resonance.

1.4 The Direct Capture Process

Direct capture is a process by which a proton is captured by a nucleus to form a bound state of

a final nucleus without the formation of a compound nucleus. This occurs along with the emission

of a γ-ray. The interaction of the proton with the electromagnetic field allows for the transition of

the proton from an initial scattering state to a final bound state. Since the electromagnetic interaction

is well known, the direct capture cross section can be calculated analytically. However, a suitable

nuclear potential must be used to describe the initial scattering and final bound state wave functions.

The dominant contribution to the direct capture cross section comes from the E1 transition of a scat-

tering state with initial angular momentum, ℓi, to a bound state of final angular momentum, ℓf . The

following describes this cross section [5, 6]:

σcalc(E1) = 0.0716µ
3

2

(

Zp

Ap
− Zt

At

)2 E3
γ

E
3

2

× (2Jf + 1) (2ℓi + 1)

(2jp + 1) (2jt + 1) (2ℓf + 1)
(ℓi010|ℓf0)2 R2

nℓi1ℓf
, (1.26)

where Zp, Zt, Ap and At are the charges and masses of the projectile and target respectively; Jf , jp

and jt are the spins of the final state, projectile and target respectively; E is the bombarding energy

and Eγ is the energy of the γ-ray transition; Rnℓi1ℓf
is known as the radial integral and is defined as

Rnℓi1ℓf
=

∫ ∞

0
uc(r)OE1ub(r)r

2dr. (1.27)

OE1 is the radial part of the E1 multipole operator and uc, ub are the initial scattering and final bound

state radial wave functions, respectively [5, 6].

The major energy dependence of the direct capture cross section comes from the radial integral,

Rnℓi1ℓf
, as a result of the energy sensitivity of the radial wave functions of the initial scattered and
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final bound states. The choice of the scattering and bound state potentials used to describe the nuclear

potential is very important and must be treated carefully. First, it is important to understand the

procedure for determining the initial and final orbital angular momenta, ℓi and ℓf . Given Jf , jp

and jt, it is possible to solve for both, which are necessary for the calculation of the radial integral.

The reaction 17O(p,γ)18F will be used as an example for this calculation and the angular momentum

coupling will be described as follows:

17O + p + ℓi −→ 18F + E1; (1.28)

17O + p + ℓf −→ 18F. (1.29)

Consider, specifically, the capture of a proton by 17O to form a 1+ state in 18F; 17O and p have

angular momenta of 5
2

+
and 1

2

+
, respectively, and can therefore couple to a total momentum of 2+ or

3+. Similarly, 18F and E1 have angular momenta of 1+ and 1− respectively and can couple to 0−, 1−,

or 2−. Since the final parity is proportional to (−1)ℓ, then ℓi must be odd. This allows for an initial

angular momentum of 1, 3 or 5. Usually, only the first two ℓ values are kept since higher contributions

are negligible.

Similarly, Eq. 1.29 may be solved for ℓf . Again, 17O and p will couple to form momenta of 2+ or

3+. To form the final angular momentum of 1+, ℓf must be even, allowing for ℓf = 2 or 4, resulting

in combinations of ℓi = 1, 3 and ℓf = 2, 4. These values are needed as inputs for calculation of the

initial scattering and final bound state wave functions of the direct capture of a proton on 17O to form

a 1+ state of 18F .

1.4.1 The Bound State Wave Function

Though the direct capture mechanism occurs through interaction with the electromagnetic field,

the nuclear potential will determine the form of the initial scattering state and final bound state wave

functions of the captured proton. In the past, the two most popular choices for the bound state potential

have been the square well and the Woods-Saxon potentials [5]. It will be shown later in this section

that the radial position at which direct capture occurs is actually outside of the nuclear radius. At

first glance this might suggest that it does not matter what choice of bound state potential is used to
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Figure 1.4: A Woods-Saxon potential for 17O with r0 = 1.25 fm, a = 0.65 fm and V0 = −60 MeV.

describe the nucleus, as long as the chosen depth, V0, reproduces the binding energy of the final state.

Figure 7 from Ref. [7], however, illustrates the fact that the choice of bound state potential can in

fact have a significant effect on the final S-factor and should be chosen carefully. For this reason, a

Woods-Saxon potential will be used for the bound state potential, as it is a more realistic description

of the nuclear potential than a square well. The Woods-Saxon potential is defined by

VWS(r) =
−V0

1 + exp
(

r−R
a

) , (1.30)

where R = r0A
1

3

t , with r0 = 1.25 fm and a = 0.65 fm. These are typical values used for the

Woods-Saxon potential, taken from Ref. [5] and illustrated in Fig. 1.4.

The full potential for calculating the bound state wave function is a combination of a Woods-Saxon

potential with the Coulomb potential of a uniformly charged sphere. The code used to calculate the

bound state wave function resulting from this choice of potential is the same code used in Refs. [5, 7].

The radial wave function for the direct capture of a proton by 17O via the Ex = 4360 keV state in

18F is shown in Fig. 1.5. The bound state wave function illustrated in Fig. 1.5 peaks outside the
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Figure 1.5: Bound state wave function for direct capture to the Ex = 4360 keV Jπ = 1+ and ℓf = 2
state in 18F. The red triangle marks the nuclear radius of the Woods-Saxon potential at 3.2 fm.

nuclear radius of 3.2 fm, meaning that the contribution to the radial integral from the bound state

wave function will be primarily outside the nuclear surface. States that are less bound in the final

nucleus will extend further outside the nuclear radius, so direct capture to less bound states will result

in a contribution to the cross section which is peaked further outside the nuclear radius.

1.4.2 The Scattered State Wave Function

The scattered state wave function is the second component of the radial integrand that requires

careful consideration. The choice of scattering potential is not trivial. It may seem obvious to simply

use the same potential for the scattered state as was used for the bound state, but this may lead to

problems since the choice of either a Woods-Saxon or square well for the scattering potential will

inherently lead to resonances in the cross section as the depth of the potential is varied, making

each an obviously improper choice of potential for describing direct capture which is a nonresonant

interaction [5]. Therefore a new potential must be chosen for the scattered state that does not give

rise to resonances. The hard sphere is a simple potential arising from scattering theory and will be

used as the scattering potential for the calculation of the scattering state wave function, radial integral,
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Figure 1.6: Scattered state wave function for an incoming proton with center of mass energy of Ecm =

200 keV and orbital angular momentum ℓi = 1 incident on a hard sphere of radius, R = 3.2 fm (denoted

by the red triangle).

and finally the direct capture cross section. A radius of R = 1.25A
1

3

t = 3.2 fm for the hard sphere

will be chosen to match the nuclear radius of the bound state potential [5]. It is clear from Fig. 1.6

that the scattered state wave function oscillates and the first maximum is very far outside the nuclear

radius. This, along with the fact that the bound state wave function also peaks outside the nuclear

radius, results in a negligible contribution to the cross section from the scattered state near the nuclear

radius. This means that the specific choice of the scattering potential is not very important, as long

as it is not a potential that gives rise to unphysical resonances. The less bound the final state, the

less important the choice of scattering potential will be, making the simple choice of the hard sphere

perfectly acceptable for the current application. Now that the bound state and scattered state wave

functions have been constructed it is possible to calculate the radial integral.

18



0 20 40 60 80 100
0

0.2

0.4

0.6

0 20 40 60 80 100

0

1

2

0 20 40 60 80 100
0

0.0002

0.0004

0.0006

0 100 200 300
-2

0

2

Radius (fm)

P
ro

b
ab

il
it

y
 (

ar
b
. 
u
n
it

s)
Bound State

Scattered State

Radial Integrand

Figure 1.7: Integrand of radial integral (bottom panel) calculated for the capture of a 200 keV proton

with ℓi = 1 into the Ex = 4360 keV state in 18F. For comparison, the corresponding bound state (top

panel) and scattered state (middle panel) wave functions have been included. The red triangle denotes

the nuclear radius of 3.2 fm.

1.4.3 The Radial Integral and Direct Capture Cross Section

Using the bound and scattered state wave functions calculated in Sec. 1.4.1 and 1.4.2, the inte-

grand of the radial integral may be constructed. The radial integrand describes where, in radius, the

direct capture actually occurs and is shown along with the bound and scattered state wave functions

in Fig. 1.7. It is clear that the proton is captured outside the nuclear radius and, for this reason, the

process of direct capture has also been called “extranuclear capture” [6].

For a given level in the final nucleus and a given bombarding energy, the calculation of the contri-

bution to the cross section for capture into that state will require summing over the contributions from

all possible ℓi and ℓf combinations. Also, the experimentally measured cross section will differ from

the calculated cross section by a factor called the spectroscopic factor, C2S(ℓf ), which is discussed

in detail in App. A.1. The spectroscopic factors are often experimentally measured and can be found
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Figure 1.8: Expected experimental S-factor for the direct capture component of 17O(p,γ)18F. These

are calculated using the same spectroscopic factors as Ref. [7]

in the literature. The experimental cross section will be found by [5, 6]

σexp =
∑

ℓi,ℓf

C2S(ℓf )σcalc. (1.31)

The total direct capture cross section for a given energy will then come from the sum of the contribu-

tion of each level in the final nucleus. Calculations will then be performed for a range of bombarding

energies, resulting in an expected experimental cross section curve. From the cross section, the astro-

physical S-factor is easily calculated using Eq. 1.2. Figure 1.8 represents the expected experimental

S-factor for the 17O(p,γ)18F reaction. Chapter 4 will be entirely dedicated to the measurement of this

direct capture curve below Ecm
p = 500 keV.

1.5 Thermonuclear Reaction Rate Calculations

A novel method has been developed using Monte Carlo techniques for evaluating thermonuclear

reaction rates. Longland et al. [8] argue that current literature reaction rates, generally provided as a
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recommended rate along with a minimum and maximum rate, have no statistical meaning owing to the

lack of an associated probability distribution. The new Monte Carlo method calculates reaction rates

and uncertainties using appropriate probability density functions for each input parameter. While

resonance energies are Gaussian distributed, resonance strengths, cross sections and partial widths

constitute a product of positive quantities including: measured yields, stopping powers, integrated

charge, etc. According to the central limit theorem, such a product of quantities will be described by

a lognormal probability density function, which can be written as [8]

f(x) =
1√
2π

1

σx
exp

(

− (ln(x) − µ)2

2σ2

)

, (1.32)

where µ and σ are the mean and standard deviation of the Gaussian distribution of ln(x). Literature

upper limit values of spectroscopic factors are properly described by Porter-Thomas density functions

and this is described in detail in App. A.1. Interference between resonances is also taken into account

in the rate calculations and a binary distribution is used when the sign of the interference is unknown

(see Sec. 5.1.4).

Each input parameter is sampled according to its respective probability density function and the

reaction rate is calculated. This procedure is repeated many times (≈ 5000) by a Monte Carlo code

written by Richard Longland, called RatesMC. The sampled rate distribution is calculated at each de-

sired temperature and the low, median and high rates, corresponding to the 16, 50 and 84 percentiles

of the cumulative distribution, are reported. The sampled rates are generally well described by a log-

normal distribution and the associated µ and σ of this lognormal distribution are also presented. These

parameters will allow for reconstruction of the sampled rate distribution. The sampling procedure and

code operation are described in detail in Ref. [8]. The sampled Monte Carlo rates are matched to

statistical model rates at high temperatures using a new procedure which is described in detail in Sec.

2.6.
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2 The Effective Thermonuclear Energy Region

2.1 Exploration of the Gamow Peak in Narrow Resonance Realms

As discussed in Chap. 1, the calculation of the total reaction rate, for specific reactions, can be

vastly simplified if the reactions proceed through narrow, isolated resonances. If this is the case,

one can perform an incoherent sum over the contribution of each known resonance, where the only

necessary inputs for the reaction rate calculation are the energy and corresponding strength of each

resonance. An interesting question arises: since the reaction rates are calculated by summing over the

contributions of each resonance to the total reaction rate, which resonances are the most important

to the specific reaction rate of interest? The resonances of importance will differ from one stellar

environment to another, since the stellar temperatures are different and the contribution from a single

narrow resonance to the total reaction rate is a function of temperature. It would be extremely inef-

ficient to measure each resonance, considering the time and resources necessary for this task and the

fact that, often, only a few of the known resonances contribute significantly to the total reaction rate

at a given temperature. This makes it crucial to find a procedure for determining which resonances,

for a specific reaction and temperature, will make up the dominant contribution to the total reaction

rate of interest.

The Gamow Peak was introduced in Chap. 1 as such a tool. Though the Gamow peak concept

is strictly defined for nonresonant reactions, it may still be useful when considering reactions that

proceed through narrow, isolated resonances. Recall that the Gamow peak arose after separating

out the major energy dependencies of the cross section for a thermonuclear reaction to define the

astrophysical S-factor. According to Eq. 1.3, the reaction rate involves an integral over the product

of the Gamow Peak and the astrophysical S-factor. Since a narrow resonance is simply a spike in the

S-factor and the product of the Gamow peak and the S-factor make up the integrand of the reaction
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Figure 2.1: Schematic narrow resonances (black lines) overlaid by a sample Gamow peak (red dashed

line).

rate contribution for a given resonance, one might expect the Gamow peak to simply select out the

resonances which are most important to the reaction rate calculation. This argument hinges on the

previous assumption that the nonresonant contribution to the S-factor is essentially constant compared

to the energy dependence of the rest of the cross section and that the Gamow peak will span a region of

resonances whose individual contributions to the total reaction rate will make the contributions from

nonresonant processes comparatively insignificant.

Figure 2.1 illustrates the role which the Gamow peak plays in selecting the most important res-

onances with a simplified version of an S-factor consisting of five narrow resonances and a typical

Gamow peak. Those resonances, which lie within the Gamow peak, should comprise the main con-

tribution to the total reaction rate. The concept of the Gamow peak has been widely used in the
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literature as a method for determining the most significant resonances for a specific reaction rate cal-

culation [9]. The basis for this can be explained using an example of a (p,γ) reaction. Equation 1.20

describes the contribution to the reaction rate from a single narrow resonance as proportional to the

resonance strength, ωγ, where the resonance strength was defined as:

ωγ = ω
ΓaΓγ

Γa + Γγ
. (2.1)

As a result of the Coulomb barrier, the particle partial width, Γa, can vary by many orders of mag-

nitude. At low energies, Γa may be insignificant compared to the γ-ray partial width, Γγ , which is

far less energy dependent and usually on the order of meV - eV. In the case where Γa ≪ Γγ the

total width, Γ, is dominated by the γ-ray partial width. This results in: ωγ ∝ Γa. The major energy

dependence of the particle partial width will come from the penetration factor (see Eq. 1.25) which is

proportional to the Gamow factor, e−2πη. Note that the Gamow factor does not contain the entire en-

ergy dependence of Γa, but it does contain the major part of the energy dependence. At energies well

below the Coulomb barrier, the particle partial width is not significantly affected by the value of the

orbital angular momentum which means, for the relative contribution of a specific narrow resonance,

the reaction rate becomes

< σv >i∝ e−2πη− E
kT . (2.2)

Recall from Eq. 1.4 that the right hand side is the Gamow peak. This suggests that the Gamow

peak offers a useful tool for identifying the narrow resonances that contribute significantly to the total

reaction rate at these stellar temperatures. Furthermore, the Gamow peak, which is a well-behaved

function of temperature, is widely accepted in the literature and provides a straightforward description

of the resonances of significance.

To test the validity of the Gamow peak for describing the true energy range of thermonuclear

burning, the fractional contributions to the total reaction rate for each individual resonance must be

calculated. For a given reaction and temperature, a plot is made of the fractional contributions to the

total reaction rate, <σν>i

<σν>total
, versus resonance energy for each individual resonance. The Gamow

peak, defined for that reaction and temperature, is then overlaid on this plot. If the Gamow peak is a

good description of the effective region of thermonuclear burning, the most significantly contributing
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Figure 2.2: The fractional contributions to the total reaction rate for individual resonances in
22Ne(p,γ)23Na at T = 0.7 GK (left panel) and 24Mg(a,γ)28Si at T = 0.8 GK (right panel) are shown

in red. The corresponding Gamow peak (black curve) is also included. Resonance strengths adopted

from Refs. [10, 11]

resonances will fall within the energy range spanned by E0 ±
1
2∆ on this plot.

Figure 2.2 shows the Gamow peak and the fractional contributions to the reaction rate of indi-

vidual resonances in 22Ne(p,γ)23Na and 24Mg(α, γ)28Si at stellar temperatures of 0.7 GK and 0.8

GK, respectively. It is important to reiterate the fact that the Gamow peak is only strictly defined

for nonresonant reactions. It is apparent, however, from Fig. 2.2 that the Gamow peak concept may

play a crucial role in narrow resonant thermonuclear reactions under the proper conditions, since it

is clearly a good description of the energy range of thermonuclear burning in these examples. The

remainder of Chap. 2 focuses on identification of conditions in which the Gamow peak concept is a

good description of the thermonuclear burning region as well as the limitations of this approximation.
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2.2 Fractional Reaction Rate Contributions

As discussed in Sec. 2.1, the Gamow Peak concept is a widely used tool for the determination of

the resonances that will contribute most significantly to the total reaction rate for a charged particle

reaction at a given temperature. In this section, the validity of the Gamow peak approximation will be

explored through the analysis of ten (p,γ) reactions including the target nuclei: 21,22Ne, 23Na, 25,26Mg,

27Al, 29,30Si, 31P and 35Cl and three (a,γ) reactions including the target nuclei: 20Ne, 24Mg and 28Si.

These nuclei constituted the available literature data at the time of this work. It is important to have

measured all of the resonances in each analyzed energy interval to ensure that missing resonances

do not affect the observed trends. These resonance strengths are available in Refs. [10, 11]. A

quantitative comparison of these target nuclei will be discussed in the following sections.

Figure 2.3 continues the analysis of the fractional contribution to the reaction rate from individual

resonances from section 2.1, exploring a wider range of temperatures. Something very interesting

begins to emerge. From Eq. 2.2 it is clear that the contribution to the total rate for a specific resonance

is highly energy dependent, owing to the dependence of the particle partial width on the Coulomb

barrier. The distribution of resonances contributing to the total rate should shift in energy when

there is a change in the temperature. Thus, as the temperature rises, the distribution of resonance

contributions is expected to shift to higher energy as seen in Fig. 2.3. Likewise, the Gamow peak

also shifts to higher energy as the temperature increases and if the Gamow peak is a valid description

of the significantly contributing resonances, this should mirror the shift seen in the distribution of

resonances. These six plots are representative of the effects seen for each of the targets studied.

There are three main characteristics of Fig. 2.3 which should be noted. The first is that at lower

temperatures (T ∼ 0.5 − 0.7 GK) the approximation of the Gamow peak as the description of the

thermonuclear burning region appears to be accurate. The second issue is that at lower temperatures

a relatively small number of resonances contribute significantly to the total reaction rate, as is clearly

displayed in Fig. 2.3. As temperature increases, more resonances become important and this has two

effects. First, contributions from only a few resonances at lower temperatures results in scatter in the

locations of the significantly contributing resonances. Thus, the bulk of the reaction rate contribution

may not be found right at the center of the Gamow peak but should still be within the previously
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Figure 2.3: Fractional reaction rate contribution for individual resonances compared to the Gamow

peak for the 27Al(p,γ)28Si (left column) and 20Ne(α,γ)24Mg (right column) reactions at stellar tem-

peratures of T = 0.5, 1.0 and 3.0 GK. Resonance strengths adopted from Refs. [10, 11]
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derived region of E0 ±
∆

2 . The specific position of these resonances is determined by the structure of

the compound nucleus. This will result in variations in the energy position of the main contribution

to the rate from one target to the next and scatter in the relative position of this main contribution to

E0. One advantage of the fact that only a few resonances dominate at low temperatures is that this

narrows down the experimentally significant range for which measurements need to be improved in

order to improve the reaction rate.

The third characteristic seen in Fig. 2.3 is that at high temperatures the energy region of ther-

monuclear burning is no longer described by the Gamow peak. This occurs once the stellar temper-

ature reaches a few GK. It is clear from these six plots that the true energy burning window, at these

higher temperatures, lies in a region below the Gamow peak. This suggests that there are limitations

to the Gamow peak approximation of the energy range of interest and that care must be taken when

employing this approximation. There are three main questions to be considered here:

(i) When is the Gamow peak description of the effective thermonuclear burning window

applicable and when and why does it break down?

(ii) At high temperatures, why is the effective thermonuclear burning window located at

lower energies compared to the Gamow peak?

(iii) Is there a consistency from one reaction to another in the position of the

effective thermonuclear burning region at these higher temperatures?

2.3 The Effective Thermonuclear Energy Region

Here a new definition for the effective stellar burning window is introduced and it will be shown

that it is more reliable than the Gamow peak concept. For this purpose, it is necessary to define a

few new variables. First, E’ is defined as the median value of the distribution of fractional reaction

rate contributions. The median is calculated by computing the cumulative fractional resonance con-

tribution function. This function is then interpolated and the resonance energy corresponding to any

desired percentile can then be found. A percentile of 50% is chosen for the median, selecting an

effective energy which should describe the actual location of the thermonuclear burning region. The
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Gamow Peak Effective Thermonuclear Energy Region (ETER)

E0 ±
∆

2 Elower to Eupper

E0 = 0.1220
(

Z2
pZ2

t
mpmt

mp+mt
T 2

9

)
1

3

E’: median of cumulative distribution

∆E0 = 0..2368
(

Z2
pZ2

t
mpmt

mp+mt
T 5

9

)
1

6

∆E’: 8th-92nd percentiles of cumulative distribution

Table 2.1: Definitions for the two energy regions; the Gamow peak (left column) and the newly

introduced Effective Thermonuclear Energy Region (right column).

width of the effective energy range is defined in analogy to the calculation of ∆, the width of the

Gamow Peak. The width of the effective energy burning window, ∆E’, will then be described as the

energy range covered by the 8th - 92nd percentiles of the cumulative reaction rate contribution. By

analogy with the Gamow peak, this range contributes 84% to the total reaction rate. The energy range

E′ ± 1
2∆E′ is defined as the Effective Thermonuclear Energy Region (ETER).

Table 2.1 displays the properties of the Gamow peak and the analogous quantities for the ETER.

It is important to note that there is a fundamental difference between these two descriptions of the

relevant thermonuclear burning regions. The Gamow peak is an approximation that is meant to predict

the energy range of resonances that will contribute to the total reaction rate. The ETER, however, is

a precise description of the resonances that are contributing to the total reaction rate. The Gamow

peak is a very attractive tool because it is simple to calculate. In contrast, calculation of the ETER

is far more complex because it requires all of the resonance strengths and energies. The ETER will

be a very useful concept for testing the validity and limitations of the Gamow peak description of

narrow resonant thermonuclear reactions but at this point it is not predictive. In Sec. 2.5 the ETER

for each of the targets studied will be presented and compared to the Gamow peak description. From

this comparison it will be possible to determine some general trends for such reactions. The ETER

will be a more useful tool if general statements about its behavior can be made.

Figure 2.4 illustrates the situation for 23Na(p,γ)24Mg at a stellar temperature of 2.5 GK. The

positions of the ETER and the Gamow peak will vary with reaction and temperature, but Figure 2.4

shows the general behavior, which clearly illustrates that the Gamow peak is not a good description

of the ETER in 23Na(p,γ)24Mg at T = 2.5 GK. A detailed comparison of all the target nuclei from

section 2.1 is presented and analyzed in Sec. 2.5.
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Figure 2.4: Relative reaction rate contributions from individual resonances in 23Na(p,γ)24Mg at T

= 2.5 GK (red lines) along with the Gamow peak (black line). The newly defined Effective Ther-

monuclear Energy Region (ETER) is denoted by a blue bar. Resonance strengths adopted from Refs.

[10, 11].

We originally considered an ETER that covered 68% of the total reaction rate, as compared to

the present 84% coverage. However, the same qualitative trends emerge. The early tests compared a

coverage width of 68% and two different definitions for its placement. The first definition was a 68%

coverage range which is centered around E’. The second definition was the smallest 68% coverage

range which also includes E’. These two definitions for the width of the ETER are compared in Fig.

2.5 for the 30Si(p,γ)31P and the 22Ne(p,γ)23Na reactions. There is not a large discrepancy in the

resulting ETER for the two coverage definitions in either of the two reactions. The energy ranges

described by the two definitions of the ETER are compared for three separate stellar temperatures of

T = 0.8, 4.0 and 7.0 GK in Fig. 2.6. These energy regions are plotted as a function of target mass

number for each of the three temperatures. The result is that there is not a large discrepancy in the

energy ranges described by either of the two coverage definitions for any of the ten reactions. This

suggests that the choice of coverage definition is relatively unimportant and that the definition chosen

for the current ETER will be consistent with any other reasonable 84% coverage definition.
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mentioned in the text for determining the 68% coverage range for the reaction rates of 30Si(p,γ)31P

(top panel) and 22Ne(p,γ)23Na (bottom panel). The red dashed lines are the 68% coverage range cen-

tered around E’ and the black lines are the smallest 68% coverage range that includes E’. Resonance

strengths adopted from Refs. [10, 11]
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2.4 The Dependence of the Reaction Rate on Partial Widths

The goal of this section is to explain the trend illustrated by Fig. 2.3. For the purposes of the

following presentation, it is assumed that only two decay channels are open for the reaction of in-

terest: the γ-ray and particle channel. Recall that the Gamow-peak description of the true region of

thermonuclear burning breaks down as the stellar temperature increases. As temperature increases the

ETER is shifted to lower energy compared to the Gamow peak. This is seen in all of the reactions

studied. It is clear that as the stellar temperature increases, there is a preference for contributions from

lower energy resonances. The explanation for this surprising result can be easily understood when

considering the role of the partial widths in Eqs. 1.20 and 2.1. The Gamow peak concept for nar-

row resonances originally arose from considering the energy dependence of the particle partial width,

Γa ∝ e−2πη, when Γa ≪ Γγ . The γ-ray partial width, however, is typically on the order of meV - eV

and has a much weaker energy dependence than the particle partial width [1]:

Γγ ∝ (E + Q)2L+1. (2.3)

If Γγ ≪ Γa, the strength becomes

ωγ ≈ ωΓγ . (2.4)

and the reaction rate takes the form

< σν >i∝ e−(Er
kT

)
Γγ . (2.5)

Notice that this expression does not exhibit a Gamow peak. In this case, the major energy dependence

is in the exponential term, which favors resonances with lower resonance energies.

This means that the Gamow peak will be a useful tool if all of the resonances that contribute sig-

nificantly to the total reaction rate have Γa ≪ Γγ , which usually pertains at low stellar temperatures.

The average particle energy increases with increasing temperature and at some point resonances with

Γγ ≪ Γa begin to contribute to the total reaction rate. These resonances were shown to favor con-

tributions from lower energy resonances. This means that as the temperature is increased there is a
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contribution from resonances with Γa ≪ Γγ and resonances with Γγ ≪ Γa, resulting in an ETER

which is shifted to lower energies compared to the Gamow peak.

Also, as the stellar temperature increases the ETER will shift to higher energy (as does the Gamow

peak). This is because the resonances with Γγ ≪ Γa will have the largest contributions to the reaction

rate from the same lowest energy resonances, regardless of temperature. These contributions will be

combined with contributions from resonances with Γa ≪ Γγ . These will follow the energy behavior

of the Gamow peak, which increases smoothly with increasing temperature. The combination of these

two effects results in an ETER which will increase in energy as the stellar temperature increases.

Continually increasing the stellar temperature leads to a distribution of thermonuclear particles

which is shifted to higher energies and eventually an environment where resonances with Γa ≪ Γγ

are no longer significantly contributing. Thus, at high enough stellar temperatures, it is expected that

the effective energy burning window should eventually become constant as the temperature is raised

since resonances with Γγ ≪ Γa have significant contributions from the same lower energy resonances.

For resonances which satisfy Γγ ≈ Γa, not fitting either of the limiting cases discussed here, the

resulting resonance strength is much more complicated and does not have a simple energy depen-

dence. The number of resonances for which the particle and γ-ray partial widths will be of the same

magnitude, however, will be very few since Γa varies by many orders of magnitude. This means that

resonances with Γγ ≈ Γa should not contribute significantly, as a group, to the total reaction rate

because they are so rare and can be disregarded for the current discussion.

2.5 Comparison of the Effective Thermonuclear Energy Range with the

Gamow Peak

The purpose of this section is to compare results for the calculation of the ETER for ten (p,γ)

reactions to the energy range predicted by the Gamow peak. First, it is interesting to consider a

specific reaction and compare the behavior of the ETER as a function of temperature with that of the

Gamow peak. Consider Fig. 2.7 showing the ETER and the Gamow peak as a function of temperature

for the 35Cl(p,γ)36Ar reaction. The red lines correspond to the upper and lower bounds of the ETER

and the black lines are the upper and lower bounds of the Gamow peak. There a couple very interesting
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Figure 2.7: Gamow peak (black lines) and ETER (red lines) for the 35Cl(p,γ)36Ar reaction. Resonance

strengths adopted from Refs. [10, 11]

features to notice here.

The first feature is that, at the lowest temperatures shown, the ETER is completely within the

Gamow peak. This is consistent with the previous discussion since at lower temperatures the vast

majority of contributing resonances are those which reside in the Γa ≪ Γγ realm and should be

described well by the Gamow peak. The narrowness of the effective energy window at these lowest

temperatures can easily be explained by the dominance of a few low energy resonances at these lower

temperatures. The stellar temperature is not high enough to populate the higher-lying resonances,

resulting in a very narrow ETER.

Another important feature of Fig. 2.7 is that the differences between the Gamow peak description

and the ETER grow increasingly larger as stellar temperature increases. This is expected, since, at the

higher temperatures, the resonances which satisfy Γa ≫ Γγ are beginning to be populated, resulting

in a preference for lower energy resonances that may actually be outside the Gamow peak at these

higher temperatures. This is the reason that the ETER sits outside the lower limit of the Gamow

peak as the temperature increases. It is also clear that the Gamow peak continues to shift to much

higher energies as the temperature increases compared to the effective energy window, which is again

explained by the preference for lower energy resonances at higher temperatures.

The last note of interest concerning Fig. 2.7 is that, starting at relatively low temperatures, the
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Figure 2.8: Gamow peak (red bars) and ETER (black bars) plotted versus target mass number for

proton-capture reactions on 21,22Ne,23Na,25,26Mg,27Al,29,30Si,31P and 35Cl at temperatures of T =

0.6 GK (top) and T = 2.5 (bottom). Resonance strengths adopted from Refs. [10, 11]

entire ETER is located below E0. This is surprising because, if the Gamow peak is a valid description

of the energy burning region, there should be scatter around the center of the Gamow peak, E0. This

is clearly not the case at a temperature as low as T ≈ 2 GK. Therefore, at these temperatures it is

improper to refer to the Gamow peak because it is no longer a valid description of the ETER in this

thermonuclear environment.

Figure 2.8 compares the ETER with the Gamow peak for all of the ten target nuclei at both a low

stellar temperature (T = 0.6 GK) and a relatively high temperature (T = 2.5 GK). First, the comparison

of the ETER with the Gamow peak at T = 0.6 GK supports the fact that the Gamow peak is a good

description of the effective thermonuclear burning region at low temperature. The ETER at T = 0.6 GK

seems to be well within the Gamow peak for each of the ten reactions, suggesting that the reaction is

proceeding through resonances which fulfill the Γa ≪ Γγ requirement that is the necessary condition

for the application of the Gamow peak. There is also a good deal of scatter in the position of the

ETER for the reactions plotted at low temperature, which can again be explained by the dominance

of the contributions of only a few, very strong, resonances. The ETER, however, is still consistently

within the energy range predicted by the Gamow peak.
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At higher temperatures a very interesting behavior emerges. As was the case with the 35Cl(p,γ)36Ar

reaction discussed earlier, it is clear that at high temperature the ETER consistently lies below E0.

The Gamow peak no longer agrees with any of the ten ETERs at 2.5 GK. Similarly to the case of

35Cl(p,γ)36Ar, the two descriptions of the energy burning window will only diverge even further as

the stellar temperature is increased. The effective energy window is not only located below E0, but is

also much narrower than the Gamow peak.

The fact that more resonances will contribute to the total reaction rate at high temperature leads

to an averaging of specific nuclear structure properties of individual levels. This should result in more

consistency in the position of the ETER from one reaction to the next than was seen for the low

temperature cases. Figure 2.8 shows that at T = 2.5 GK the effective energy window for each reaction

is located at a similar position, which is near an energy of E′ ≈ 0.8 MeV. It is expected that the position

of the ETER will remain nearly constant as the temperature increases since the newly contributing

resonances give preference to those with lower resonance energies. Thus the added effects of higher

energy resonances, as the temperature increases, will be small. This suggests that one may be able to

predict the position of the effective energy burning window for other reactions that proceed through

narrow, isolated resonances at higher temperatures.

2.6 Applications of the Effective Thermonuclear Energy Region

It has been shown that the blanket use of the Gamow peak for astrophysical applications is incor-

rect. Where, however, is the concept of the Gamow peak used for specific applications and calcula-

tions? One might ask if the use of the ETER will actually significantly change the results of these

calculations.

One area where the Gamow peak is used for astrophysical applications is in the calculation of

reaction rates at very high temperatures. These are temperatures at which very closely spaced energy

levels in the compound nucleus begin to become important. This requires the use of statistical models

for the calculation of reaction rates. These statistical models need to be matched to the experimentally

measured values at the lower energies, where the resonances are still able to be resolved individu-

ally. The magnitude of the cross sections from statistical models is not always well known and the
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experimental rates allow for a proper normalization procedure. It is interesting that the Gamow peak

concept is used as a tool in these matching procedures at temperatures well above where the Gamow

peak concept was shown to no longer describe the ETER. The use of the Gamow peak at these higher

temperatures is not only incorrect, but may possibly invalidate the resulting reaction rate calculations.

The specific statistical model that will be discussed here is the Hauser-Feshbach model. Reference

[12] contains a similar derivation of the Gamow peak contribution to the reaction rate as was presented

in this chapter. Also discussed in Ref. [12] is the spacing of nuclear energy levels at higher energies,

which correspond to higher stellar temperatures. Reference [12] states that the Hauser-Feshbach

model is applicable if there exist ten levels in a compound nucleus which fall in the Gamow peak

defined by that reaction at a given stellar temperature. So, the criterion for the applicability of the

statistical model involves the Gamow-peak concept which may no longer exist at such temperatures.

For this application, the ETER should instead be used to allow for a consistent description of the range

of applicability of the statistical model in question, which does not make use of the Gamow peak at

high temperatures.

Along with the previous example, the Gamow peak concept is also used in conjunction with the

Hauser-Feshbach model as a tool for determining the proper matching temperature for transitioning

from experimentally measured reaction rates to those calculated using a statistical model in Refs.

[13, 14]. The Gamow peak is assumed to be the proper description of the effective burning window for

a thermonuclear reaction. The experimentally determined rates are then used as long as the resolvable

resonances fall within a region defined by the Gamow peak concept. That is, the experimental reaction

rates will be used as long as the following condition is met [15]:

Emax
res ≥ E0 + n∆, (2.6)

where n is a constant. For simplicity n = 1 is usually chosen but could in principle be different. As

long as the resonance with the maximum experimentally measured energy, Emax
res , lies outside E0 +∆,

the experimentally determined reaction rates will be used. It is important to note that the above range

is not strictly the Gamow peak, but uses the Gamow peak concept.

The temperature dependence of E0 and ∆ can now be inserted to Eq. 2.6 to find a matching
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temperature, Tmatch, which solves the following equation:

Emax
res = cT

2

3

9 + n

(

dT
5

6

9

)

. (2.7)

Tmatch is then the temperature at which the experimentally determined reaction rates are used to

normalize the results calculated from the statistical model. The constants c and d are defined by Tab.

2.1. The reaction rate below Tmatch is found using the experimental results and the reaction rate above

Tmatch is found using the statistical model which was normalized to the experimental rates at Tmatch.

The Gamow peak concept provides a very simple prescription for matching the reaction rates, and for

that reason is a very attractive result.

If, instead, the ETER is used, are there significant differences in the resulting reaction rates for

higher temperatures? The experimentally determined rates will not be altered, since they are a simple

sum over the known resonances, but the range over which they are used may be different. If a different

definition for the effective energy range is used, this will lead to a new normalization factor for the

statistical model, since the experimental and statistical rates are now normalized at a different Tmatch

than the one found using the Gamow peak concept. The new equation for finding the proper matching

temperature becomes:

Emax
res ≥ E′ + n∆E′. (2.8)

This allows the matching condition to be set by the ETER. The problem with this procedure is that

the matching temperature cannot be calculated analytically because the temperature dependence of E′

and ∆E′ is not known from one reaction to the next. This is one reason that the Gamow peak concept

is much easier to use for this matching. The values for the matching temperature using the ETER for

the calculation of Tmatch and those obtained using the Gamow peak concept are compared in Tab.

2.2.

It is clear, from Tab. 2.2, that the matching temperatures calculated using the Gamow peak extend

well into the region where the Gamow peak no longer exists. This means that the temperature where

the experimental reaction rates are matched to statistical models should no longer be calculated using

the Gamow peak concept. Also, there is a vast difference in the matching temperatures found using

the Gamow peak concept versus the ETER in most of the reactions shown. This is expected since, at

39



E
exp
max Tmatch (GK) Tmatch (GK)

Reaction (keV) via E0 ± ∆ via E’±∆
′

20Ne(α, γ)24Mg 5011 3.22 10.0
21Ne(p,γ)22Na 1937 2.23 8.96
22Ne(p,γ)23Na 1823 2.05 4.05
23Na(p,γ)24Mg 2256 2.56 10.0
23Na(p,α)20Ne 2328 2.67 3.53
24Mg(p,γ)25Al 2311 2.49 9.56
24Mg(α, γ)28Si 5240 2.97 10.0
25Mg(p,γ)26Al 1762 1.73 3.25
26Mg(p,γ)27Al 2867 3.32 4.31
27Al(p,γ)28Si 3819 4.60 10.0

27Al(p,α)24Mg 2967 3.29 3.62
28Si(p,γ)29P 2991 3.16 10.0
29Si(p,γ)30P 3075 3.28 5.05
30Si(p,γ)31P 2929 3.07 5.18
31P(p,γ)32S 1963 1.72 2.98
31P(p,α)28Si 1963 1.72 1.57
32S(p,γ)33Cl 2470 2.23 8.56
35Cl(p,γ)36Ar 2828 2.57 5.08
35Cl(p,α)32S 2838 2.58 2.25
36Ar(p,γ)37K 2575 2.17 7.39
40Ca(p,γ)41Sc 1887 1.32 1.96

Table 2.2: Values of the matching temperatures are tabulated above. The specific reactions analyzed

(column 1) are presented, along with the corresponding highest energy experimentally measured res-

onance (column 2) for that reaction. The measured resonance strength data are from Refs. [10, 11].

The Hauser-Feshbach calculations were evaluated using the Non-smoker code [12]. The resulting

matching temperature using the Gamow peak description (column 3) and the ETER (column 4) are

included.
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Figure 2.9: Reaction rates matched to Hauser-Feshbach calculations using the Gamow peak concept

(black) and the ETER (red) for the reaction 25Al(p,γ)26Si. The measured resonance strength data are

from Refs. [10, 11]. The Hauser-Feshbach calculations were obtained from the Non-smoker code[12].

these higher temperatures, it has been shown that the ETER is located significantly lower in energy

than the Gamow peak. Thus, matching the edge of the ETER with the maximum resonance energy

will produce a much higher temperature than that calculated using the edge of the Gamow peak.

Figure 2.9 illustrates the differences in the calculated values for the reaction rate, as a function

of temperature, when the matching temperature is found using the Gamow peak compared to the

result using the ETER. This demonstrates that there exists a large discrepancy in the final rates when

using the ETER versus the Gamow peak concept. Since the final results for the reaction rates differ

significantly using the ETER, it is obvious that the Gamow peak concept leads to an incorrect reaction

rate and cannot be used in this case. Not all the reactions analyzed show as large a deviation as seen

in figure 2.9, but they all differ noticeably and thus the ETER must be used when determining the

matching temperature for reaction rate calculations. See also figure 2.10 for a similar comparison

using the 29Si(p,γ)30P reaction.

The work described in this chapter has been published in Newton et al. [15] and Newton et al.

[16] to which the reader is referred for details.
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Figure 2.10: Reaction rates matched to Hauser-Feshbach calculations using the Gamow peak concept

(black) and the ETER (red) for the reaction 29Si(p,γ)30P. The measured resonance strength data are

from Refs. [10, 11]. The Hauser-Feshbach calculations were obtained from the Non-smoker code

[12]
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3 Measuring Elab
r
= 193 keV in 17O(p,α)14N

3.1 Introduction

Hydrogen burning of 17O is important in several stellar environments including red giants, asymp-

totic giant branch stars, massive stars, and classical novae. Of specific interest to the current work is

a resonance at Elab
r = 193 keV in 17O + p that was shown by Coc et al. to be of particular importance

to classical novae [17]. This resonance was first observed in the (p,γ) channel by Fox et al. [18] in

a measurement at LENA and was remeasured independently by Fox et al. [7]. These measurements

reported a resonance energy of Elab
r = 193.2 ± 0.9 keV and a resonance strength of ωγpγ = (1.2 ±

0.2)×10−6 eV. The corresponding resonance strength in the α-channel was later measured by Chafa

et al. [19] and reported to be ωγpα = (1.6 ± 0.2)×10−3 eV. In this experiment, the (p,γ) strength was

also measured using an activation method with the same targets used for the (p,α) measurement. This

initially resulted in a resonance strength of ωγpγ = (3.4 ± 0.6)×10−6 eV [19] and was subsequently

revised by Chafa et al. to ωγpγ = (2.2 ± 0.4)×10−6 eV [20]. This value differs significantly from the

previously measured value of Fox et al. This discrepancy may significantly affect the calculation of

the total reaction rate, ultimately affecting the nucleosynthesis of specific isotopes in classical novae,

as explained in Chap. 1.

The activation method performed by Chafa et al. [21] led to a value for the (p,γ) strength which

was relative to that of the (p,α) strength, while Fox et al. measured the strength of this resonance

directly by detecting the prompt gamma rays emitted by the target. In the current work, the Elab
r =

193 keV resonance in 17O(p,α)14N is measured to both verify the previous result of Ref. [21] and

elucidate the source of the discrepancies in reported (p,γ) resonance strengths. This measurement

was performed relative to the Elab
r = 151 keV resonance in 18O(p,α)15N which has a substantial, well

known strength of ωγ = 0.167 ± 0.012 eV [1] and is the same reference resonance strength used by



Chafa et al.

3.2 Experimental Setup

The experimental equipment used for the measurement of the strength of the resonance at Elab
r

= 193 keV in 17O(p,α)14N was similar to that of Chafa et al. [21] and used a proton beam from the

LENA 1 MV JN Van de Graaff accelerator in the energy range of 140 - 210 keV. This spanned the

energy range necessary to measure the reference resonance located at Elab
r = 151 keV in 18O(p,α)15N

and the new Elab
r = 193 keV resonance in 17O(p,α)14N. The beam energy was calibrated using this

reference resonance and a precise resonance energy of Ecm
r = (150.82 ± 0.09) keV [22]. The beam

passed through a copper pipe, cooled with liquid nitrogen, that ended in an aperture biased to -300

V to suppress the emission of secondary electrons from the target as well as to prevent electrons

produced by the beam from striking apertures upstream of the target. The suppressor was positioned

in close geometry to the target. The experimental setup also consisted of two oxygen enriched targets

housed within a target chamber and a surface barrier silicon detector. These are discussed in detail in

the following sections. The targets were directly cooled using chilled water that ran behind the target

backings.

3.2.1 The 45◦ Target Chamber

Figure 3.1 illustrates the “45◦ target chamber” configuration in which the target is mounted at a

45◦ angle with respect to the beam direction. This allows for a large angular acceptance for detection

of the outgoing α-particles, since the forward angles are not blocked by the shadow of the target.

There are two detector ports available, corresponding to detection angles of 135◦ and 90◦ with respect

to the beam direction and the center of the target. The target chamber served as a Faraday cup for

beam integration. It was necessary to redesign the beam-line to allow the copper cold trap to be as

close as possible to the target, while not blocking the view of the detector. Though this target chamber

allows for measurements at 135◦ and 90◦, only one angular position was utilized at a time and the

other port was used to view the scintillation produced by the beam on target (it was necessary to

debias the working detector while looking through the viewer window). The data taken at 90◦ were
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Figure 3.1: An illustration of the 45◦ target chamber used for measurement of Elab
r = 193 keV in

17O(p,α)14N. Drawing compliments of Johnny Cesaratto
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significantly affected by the sensitivity of the detector efficiency to the beam position. It was found

that the measurements were taken with the beam slightly off center of the target. For this reason,

the data taken from the 135◦ port were much more reliable and will be used for determination of

the resonance strength of interest. The actual detection angle was found to be 133◦ as a result of

the misalignment of the beam on target. Data from only one angular position will not allow for

measurement of the angular distribution of the emitted α-particles, but is sufficient for measurement

of the resonance strength since the angular distribution expected for the Elab
r = 193 keV resonance in

17O(p,α)14N was measured by Chafa et al. [21] and will be used in the final analysis of the resonance

strength.

3.2.2 The Silicon Surface Barrier Detector

The reaction α-particles were detected using a 150 mm2 silicon surface barrier detector. The

detector was biased to 40 V for the best resolution and was mounted at a distance of 7.5 cm from the

target at an angle of 135◦ from the beam-line to the center of target axis. The signals from the detector

were amplified and collected using a multichannel analyzer (MCA). A foil was placed in front of

the detector to shield it from the vast number of elastically scattered protons coming from the target,

which can quickly damage the detector. The foil (described in Sec. 3.2.3) determines the maximum

energy at which the measurement may be performed. Continuous monitoring of the dead time of the

detector is critical for ensuring that protons are not leaking through the foil and flooding the detector.

The dead time was measured using a precision pulse generator.

For a silicon detector the intrinsic efficiency should be unity, making the detection efficiency

equal to the geometric efficiency. The measured efficiency was evaluated using a 241Am source and

the geometric efficiency was then calculated using the following equation from Ref. [1]

ηpeak =
1

2

(

1 − d√
d2 + r2

)

, (3.1)

where d and r represent the distance from detector to the target and the radius of the detector, respec-

tively. For this setup the distance from detector to target was 7.53 cm and the radius of the detector

was 0.69 cm. This gives a detection efficiency of η = 0.0021. The activity of the 241Am source was
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Figure 3.2: Measured MCA α-particle spectrum of a 241Am source taken with the 150 mm2 silicon

detector used throughout this experiment. The displayed peak has a full width half max of ≈ 23 keV.

489.8 Bq. A representative MCA spectrum in which the 241Am source is placed at the position of the

target is presented in Fig. 3.2. The detector efficiency for measuring the α-particles from this source

was found to be η = 0.00201 ± 0.0006. Since this measured efficiency agrees with the calculated

geometric efficiency, the geometric efficiency η = 0.0021 was used as the detection efficiency of the

Si detector.

The actual geometric detection efficiency was not critical since we were performing a relative

strength measurement, making the ratio of detection efficiencies for the two strengths the quantity

of interest. The geometric efficiency canceled out in this ratio, leaving only the ratio of the lab to

center of mass conversion factors, dΩlab

dΩcm . This factor is energy dependent and was different for the two

resonance energies, as discussed in detail in section 3.5.5.

3.2.3 The Thin Mylar Foil

The beam currents and energies required for this experiment made it necessary to place a foil in

front of the detector to stop the elastically scattered protons incident on the detector, while allowing

the α-particles of interest to pass through and be detected. Selection of the appropriate foil thick-
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Figure 3.3: Range in mylar of protons (red points) and α-particles (black points) from the reactions
17O(p,α)14N (top panel) and 18O(p,α)15N (bottom panel) at a detection angle of 135◦. The stopping

power calculations were performed using SRIM2003 [23].

ness required kinematic calculations of the energy of the elastically scattered protons and α-particles

incident on the detector as a function of the incoming beam energy.

There was a trade-off when choosing the thickness of the mylar foil. If the foil was too thick, the

elastically scattered protons would be stopped, but the α-particles would lose too much energy to be

distinguished from electronic noise. If the foil was too thin, protons could leak through and damage the

detector. Fig. 3.3 shows the range in mylar for the elastically scattered protons and emitted α-particles

for both the 17O(p,α)14N and 18O(p,α)15N reactions. The Q-value of the 18O(p,α)15N reaction is

larger and results in a better separation between the range of protons and α-particles in mylar. Thus

the foil thickness was constrained by the 17O(p,α)14N reaction kinematics. A foil thickness of 2.0 µm

was chosen which will allow for measurements with bombarding energies up to ≈ 190-200 keV. The

actual experimental limit depended on the uniformity of the mylar foil from the distributor and was

determined by the measured α-particle spectra. This is discussed in detail in Sec. 3.3.
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3.2.4 The Enriched 17O and 18O Anodized Targets

The targets used for this experiment were prepared by anodization of 0.5 mm thick, etched tan-

talum backings with 17O or 18O enriched water. The procedure for anodization is described in App.

A.2. The targets were prepared by Chris Fox and are the same targets used in the previous study of

the Elab
r = 193 keV resonance in 17O(p,γ)18F [18, 7]. The supplier quoted enrichments of 90.7% and

97.5% for the 17O and 18O water, respectively. This process of anodizing oxygen onto tantalum has

also been found to produce a well know stoichiometry of Ta2O5 and the anodizing voltage precisely

determines target thickness [24]. The thickness of both targets was found to be ≈ 34 keV at their re-

spective bombarding energies. The thickness of the target is determined from a plot of the thick-target

yield curve (see Sec. 3.4). It should be noted that a major difference between the current measure-

ment and that of Chafa et al. [19, 21] is the choice of targets. Chafa et al. employed targets made by

implanting oxygen into tantalum.

An advantage to using anodized targets is that they are very stable. The beam currents used in this

experiment were limited by the sensitivity of the detector to elastically scattered protons that passed

through pinholes and nonuniformities in the foil fronting the detector and not by the intensity that the

targets could withstand. Therefore, the beam currents used in this experiment, ≈ 20-80 µA, were well

below the currents used on these same targets in the measurements of Refs. [7, 18]. Target thickness

was measured, periodically, over the course of the experiment and no degradation was observed in

either target. The thickness of the 17O enriched target was evaluated using the trace amount of 18O in

that target, which enabled measurement of the 151 keV resonance in 18O(p,α)15N.

3.3 Fitting the Measured α-particle Peaks

Determination of yield was necessary for analyzing the measured pulse-height spectra. A repre-

sentative on and off-resonance spectrum for the Elab
r = 193 keV resonance in 17O(p,α)14N is provided

in Fig. 3.4. There is a good separation between the α-particle peak and the low energy background.

The position of the peak corresponds to the energy of the α-particles emitted from the target, which

for this resonance is Eα ≈ 1.0 MeV before the mylar foil and Eα ≈ 0.4 MeV after passing through the

foil. The low-energy background peak consists of contributions from electronic noise in the detector
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Figure 3.4: Measured spectra in 17O(p,α)14N. The top panel is taken on-resonance at Elab
p = 195 keV

and the bottom panel is off-resonance, taken at Elab
p = 192 keV.

and associated electronics and contributions from protons that penetrated the mylar foil. As the proton

bombarding energy increases, the low energy noise should move to higher energy since more protons

will leak through the foil. Additionally, the α-particle peak should shift to slightly lower energy since

the reaction will occur deeper in the target and the emitted α-particle must first escape the target,

losing energy in the process. This results in a poorer separation between the two peaks. For a target of

≈ 34 keV width, the entire thickness of the target cannot be observed with the 17O(p,α)14N reaction

because the α-particle peak should be totally consumed by the increasing low energy noise peak well

before the entire thickness of the target could be probed. This is illustrated in Fig. 3.5, where at a

bombarding energy of Elab
p = 204 keV there was no longer a clearly separated α-particle peak.

The measured spectra were fit to a function which is the sum of two Gaussians given by,

h(x) = a exp

[

−
(

x − b

c

)2
]

+ d exp

[

−
(

x − f

g

)2
]

. (3.2)

The first Gaussian was selected to fit the tail of the low energy background and the second Gaussian

to fit the α-particle peak. The measured spectra were separated into high, middle and low energy
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Figure 3.5: Comparison of measured spectra in 17O(p,α)14N measured at Elab
p =195 keV (top panel)

and Elab
p = 204 keV (bottom panel). The difference in the α-particle peak heights is the result of

variations in accumulated charges on the target for the two runs and poorer resolution at the higher

bombarding energy.
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Figure 3.6: Fitted spectrum in 17O(p,α)14N using two Gaussians to describe the function.

groups. A well separated peak was chosen from each group to fix the width of the α-particle peak.

This peak width was held constant for the fitting of the other spectra in that group. Recall that as the

bombarding energy increases, the position in the target where the reaction is occurring will be deeper.

Therefore, there will be more energy straggling at higher energies because the α-particle must escape

the target prior to detection. The fixed width for each of the three groups increased as the bombarding

energy increased. This width was very important to the determination of the number of counts in a

given α-particle peak, N. For the peak described by Eq. 3.2, N is given by

N = dg
√

π. (3.3)

Since the width of the peak, g, was chosen to be a constant, the uncertainty in the number of counts

in the α-particle peak took on a very simple form,

σN = σdg
√

π. (3.4)

Figure 3.6 is an example of the fit used for a specific run. This α-particle peak was found to have a

width of 12.5 channels and a maximum of 68.9 ± 2.0 counts. This spectrum was used to set the width
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run d g N Ebeam (keV)

406 5.64076 ± 0.5021 12.5 125 ± 11 193

407 12.2888 ± 0.9229 12.5 272 ± 20 195

408 12.924 ± 0.8721 12.5 286 ± 19 196

409 10.1806 ± 0.7452 12.5 226 ± 17 194

410 9.79342 ± 0.6913 12.5 217 ± 15 197

411 68.8999 ± 2.013 12.5 1526 ± 45 195

412 45.2364 ± 1.15 12.5 1002 ± 25 196

413 16.9117 ± 0.994 15.5 465 ± 27 198

414 16.4488 ± 0.7999 15.5 452 ± 22 199

415 19.6223 ± 0.8965 15.5 539 ± 25 200

416 16.5297 ± 0.6411 20.5 601 ± 23 201

417 27.2875 ± 0.8534 20.5 991 ± 31 202

418 11.5922 ± 0.7242 20.5 421 ± 26 203

419 10.569 ± 0.8316 20.5 385 ± 30 204

421 11.8897 ± 0.7885 20.5 432 ± 29 201

Table 3.1: Values for height (d) width (g) and number of counts (N) in each of the α-particle peaks

from the runs for 17O(p,α)14N. The parameters d and g are defined by Eq. 3.2. The runs used for

setting the various widths of the peaks were 411, 413, and 416 and it is clear that the set width of the

peaks increases as our bombarding energy increases.

of the peaks in the first group because it contained the most counts and was still well separated from

the low energy background. At an energy of Elab
p = 205 keV the separation was so poor that it was

no longer possible to fit the α-particle peak to a reasonable uncertainty. For this reason, the highest

bombarding energy used for analysis was Elab
p = 204 keV. This did not probe the entire thickness of

our target, but it will be shown in Sec. 3.4 that this range was sufficient for the measurement of the

193 keV resonance strength.

The fitted α-particle peak heights, widths and the associated number of total counts for the

17O(p,α)14N spectra are presented in Tab. 3.1. Fits to the measured spectra from the Elab
r = 151

keV resonance in 18O(p,α)15N were not necessary since the energies of the α-particles emitted from

the target were Eα ≈ 3.2 MeV before the mylar foil and Eα ≈ 2.8 MeV after passing through the

foil. This led to a well separated α-particle peak which is shown in Fig. 3.7 for the Elab
r = 151 keV

resonance in 18O(p,α)15N at a bombarding energy of Elab
p = 158 keV.
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Figure 3.7: Measured spectrum in 18O(p,α)15N at Elab
p = 158 keV. The α-particle peak is well sep-

arated from the low energy background. This bombarding energy is positioned on top of the yield

curve.

3.4 Resonance Excitation Functions for the 17O and 18O Targets

Having determined the counts in the α-particle peak for each spectrum for the Elab
r = 193 keV

resonance in 17O(p,α)14N and the Elab
r = 151 keV resonance in 18O(p,α)15N, the associated excitation

functions were constructed and are shown in Fig. 3.8. See Ref. [1] for and in-depth discussion of

excitation functions. For these two excitation functions, the relative yield represents counts detected

per µC of beam on target.

A fit to both excitation functions was performed to determine the maximum of the yield curve,

which is necessary to calculate the resonance strength from a thick target. This fit was performed

using a code written by Richard Longland, which takes the function for a thick target yield curve and

fits the parameters to the given data, accounting for statistical errors of the individual points. Using

this fit, the following maximum yields were found:

17O(p, α)14N : Ymax = 0.01084 ± 0.00012

18O(p, α)15N : Ymax = 1.4037 ± 0.0059
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Figure 3.8: Measured excitation functions for the Elab
r = 193 keV resonance in 17O(p,α)14N (top

panel) and the Elab
r = 151 keV resonance in 18O(p,α)15N (bottom panel).

The uncertainties listed for the maximum yields are purely statistical. The uncertainty in the integrated

charge (BCI) will be accounted for when the calculations of the resonance strengths are carried out

explicitly (see section 3.5.3).

It was also possible to determine target widths from the yield curve plots. An 18O target thickness

of 34 keV was measured over the bombarding energy range used for the measurement of the Elab
r =

151 keV resonance in 18O(p,α)15N. The 17O yield curve was unable to be used for the determination

of target thickness, since the entire thickness of that target could not be probed with the current setup at

Elab
r = 193 keV. Recall, that the trace amounts of 18O in the enriched 17O target were used to measure

a thickness corresponding to 34 keV for this target at Elab
r = 193 keV.

3.5 Measurement of Relative Resonance Strength

The strength of a resonance may be found experimentally using the following equation [1]:

ωγ =
2

λ2
ϵeff

Nα

NpBWη
(3.5)
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where λ is the de Broglie wavelength; Np is the number of incident protons; Nα is the number of

resonant α-particles measured on the plateau of the yield curve; W is the angular distribution of

outgoing α-particles; B is the branching ratio; ϵeff is the effective stopping power of the target and η

is the detector efficiency. Recall that the resonance strength arises from integrating the Breit-Wigner

form of the resonance cross section to find the reaction rate in Eq. 1.19.

Many of the uncertainties that contribute to the direct measurement of a resonance strength are

significantly reduced when a relative measurement is made. This experiment employed the same

reference resonance that was used in Refs. [19, 21]. Labeling the components of Eq. 3.5 with the

resonance energies of the two resonances measured, Elab
r = 151 keV and Elab

r = 193 keV results in:

ωγ(151) =
2

λ2(151)
ϵeff (151)

Nα(151)

Np(151)B(151)W (151)η(151)
(3.6)

and

ωγ(193) =
2

λ2(193)
ϵeff (193)

Nα(193)

Np(193)B(193)W (193)η(193)
. (3.7)

Taking the ratio of Eqs. 3.6 and 3.7 and solving for ωγ(193) results in the following for the

strength of the Elab
r = 193 keV resonance in 17O(p,α)14N:

ωγ(193) = ωγ(151)
λ2(151)

λ2(193)

ϵeff (193)

ϵeff (151)

Nα(193)

Nα(151)

Np(151)

Np(193)

B(151)

B(193)

W (151)

W (193)

η(151)

η(193)
. (3.8)

A detailed discussion of each term and ratio from Eq. 3.8 follows.

3.5.1 The Ratio of de Broglie Wavelegths

The ratio of squares of the de Broglie wavelengths is a straightforward calculation and the uncer-

tainties are small due to the precisely known atomic masses and resonance energies involved. The

square of the de Broglie wavelength for a given resonance energy is given numerically by [1]:

λ2
r = 2

(

mp + mt

mt

)2 4.125 × 10−18

mpElab
r

cm2, (3.9)
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where mp and mt represent the atomic mass of the projectile and target, respectively, and Elab
r is the

laboratory resonance energy in eV. Using Eq. 3.9, the ratio of the square of de Broglie wavelengths

for the resonances at Elab
r = 193 keV in 17O(p,α)14N and Elab

r = 151 keV in 18O(p,α)15N can be

derived, resulting in:

λ2
r(151)

λ2
r(193)

=

(

(mp + m18O)m17O

m18O (mp + m17O)

)2 Elab
r (193)

Elab
r (151)

. (3.10)

The masses in Eq. 3.10 are well know and the values for Elab
r (193) and Elab

r (151) are taken from

reference [7]. The values are as follows:

mp = 1.007825 amu;

m17O = 16.999131703 amu;

m18O = 17.999161 amu;

Elab
r (193) = 193.2 ± 0.9 keV and

Elab
r (151) = 150.82 ± 0.09 keV

Inserting these values into Eq. 3.10 gives,

λ2
r(151)

λ2
r(193)

= 1.2730 ± 0.0060 (3.11)

Extra significant figures are kept, throughout, until the final strength is calculated to avoid rounding

errors.

3.5.2 The Ratio of Effective Stopping Powers

Often, one of the major sources of uncertainty in any measurement involving thick targets will be

the experimental stopping powers. There is not a consistent procedure in the literature for assigning

an uncertainty to these stopping power values. For the purposes of the following calculations, the

values for the stopping powers (in laboratory units) will be taken from SRIM [23] with an associated

uncertainty of 5%, which is a typical uncertainty used in the literature. The effective stopping power
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for the 17O target of protons can be expressed as [7],

ϵcm
eff (17O) =

m17

m17 + mp

(

ϵ(17O) +
N(16O)

N(17O)
ϵ(16O) +

N(18O)

N(17O)
ϵ(18O) +

N(Ta)

N(17O)
ϵ(Ta)

)

, (3.12)

where ϵ denotes the stopping power of the specific isotope and N is the number density of that nucleus.

Since the experimental elemental stopping powers will be assigned errors of 5%, the variations in the

stopping power between isotopes will be insignificant. This means the stopping powers for each

isotope can be replaced with the SRIM results for the given element. That is, ϵ(16O) ≈ ϵ(17O) ≈

ϵ(18O) ≈ ϵ(O). This approximation will simplify the form of the effective stopping power for protons

of the 17O target, giving:

ϵcm
eff (17O) =

m17

m17 + mp

(

N(O)

N(17O)
ϵ(O) +

N(Ta)

N(17O)
ϵ(Ta)

)

, (3.13)

where N(O) = N(16O)+N(17O)+N(18O) is the number density of all oxygen isotopes. Similarly

to Eq. 3.13 the effective stopping power for protons of the 18O target will be,

ϵcm
eff (18O) =

m18

m18 + mp

(

N(O)

N(18O)
ϵ(O) +

N(Ta)

N(18O)
ϵ(Ta)

)

. (3.14)

The 17O target was anodized using 90.7% enriched 17O water and the 18O target was anodized using

97.5% enriched 18O water. The calculation of the effective stopping power for the enriched 17O target

requires the following values:

mp = 1.007825 amu;

m17O = 16.999131703 amu;

N(O)

N(17O)
= 1.1025 ± .0221;

N(Ta)

N(17O)
= 0.4410 ± 0.0088;

ϵ(O)193keV = (13.54 ± 0.68) × 10−15 eV cm2

atom
and

ϵ(Ta)193keV = (34.57 ± 1.73) × 10−15 eV cm2

atom.
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The ratios of number densities listed above come from the atomic abundances given by the distributor

of the 90.7% enriched 17O water and the well known stoichiometry of anodized oxygen on tantalum

of Ta2O5. The associated uncertainties result from assuming a 5% uncertainty on the experimental

stopping power values and 2% uncertainty on the ratios of the number densities in the target. Inserting

these values into Eq. 3.13 gives,

ϵcm
eff (17O) = 0.94403

[

1.1025
(

13.54 × 10−15
)

+ 0.44101
(

34.57 × 10−15
)] eV cm2

atom

ϵcm
eff (17O) = (28.48 ± 1.08) × 10−15 eV cm2

atom
. (3.15)

The same procedure was used to calculate the effective stopping power of the 18O target. Since

this target was anodized with highly enriched 18O water, different values for the ratio of isotopic

number densities in the target are expected. Also, ϵ (O) and ϵ (Ta) vary for this calculation since the

resonance energy is different and the stopping powers are functions of incident proton energy. The

following values were used for the calculation of the effective stopping power of the 18O target made

with the 97.5% enriched 18O water:

mp = 1.007825 amu;

m18O = 17.999161 amu;

N(O)

N(18O)
= 1.0256 ± 0.0205;

N(Ta)

N(18O)
= 0.4103 ± 0.0082;

ϵ(O)151keV = (14.77 ± 0.74) × 10−15 eV cm2

atom
and

ϵ(Ta)151keV = (35.44 ± 1.77) × 10−15 eV cm2

atom
.

The stopping power values were derived from the SRIM [23] and ratios were calculated using

both the isotopic abundances quoted by the supplier of the 18O water and the stoichiometry of the
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anodized target. The result for the effective stopping power of the 18O target is

ϵ
18O
eff = (28.12 ± 1.07) × 10−15 eV cm2

atom
. (3.16)

The ratio of Eqs. 3.15 and 3.16 gives the final ratio of effective stopping powers,

ϵ
17O
eff

ϵ
18O
eff

=
28.48 × 10−15

28.12 × 10−15

ϵ
17O
eff

ϵ
18O
eff

= 1.013 ± 0.054. (3.17)

3.5.3 The Relative Reaction Yields

The calculation of the quantity
Nα

193

Nα

151

Np
151

Np
193

makes use of the fits to the yield curves that were pre-

sented in Sec. 3.4. Recall that the fit to the plateau of the yield curve actually gives the ratio Nα

BCI .

The factor for Coulombs per pulse on the integrator used for the BCI counting can then be used to

find the value of Nα

Np from the fit to the plateau of the yield curve, provided the Coulombs per pulse

setting is the same for the measurement of both the Elab
r = 193 keV resonance in 17O(p,α)14N and

the Elab
r = 151 keV resonance in 18O(p,α)15N. If this is the case, calculation of the number of protons

is unnecessary. The BCI value will suffice since this factor cancels in the multiplication of the two

ratios,

Np
193 = BCI193 ×

Coulombs

pulse
factor ×

(

1proton

1.602 × 10−19Coulombs

)

.

Thus, the ratio of protons is given by the ratio of BCI values:

Np
151

Np
193

=
BCIp

151

BCIp
193

. (3.18)

This simplifies the current calculation significantly, since the fits to the measured yield curves have

already been performed and evaluated.

17O :
Nα

193

BCI193
= 0.010843 ± 0.0001209

18O :
Nα

151

BCI151
= 1.4037 ± 0.0059
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In addition to statistical uncertainties, we assign a 5% uncertainty to the ratio of the current inte-

gration, BCI151
BCI193

. This 5% is added in quadrature with the statistical uncertainty on the statistical fit to

yield:
(

Nα
193

Nα
151

)(

Np
151

Np
193

)

= 0.00772 ± 0.00040 (3.19)

3.5.4 The Angular Distribution Functions

For the resonance at Elab
r = 151 keV in 18O(p,α)15N, there is an isotropic distribution of outgoing

α-particles because the spin of this resonance is J = 1/2. This corresponds to W(θ) = 1, where W(θ)

is the angular distribution of outgoing α-particles. The 17O(p,α)14N reaction is not isotropic because

of the spins and parities involved, therefore the angle of α-particle detection becomes important.

Recall that the current measurement was performed at a single angle, preventing extraction of angular

distribution information. Thus, the angular distribution function found by Chafa et al. [19] was used.

Their data were fit to a Legendre polynomial, resulting in an angular distribution of

W (θ) = 1 + (0.16 ± 0.03)P2(cosθ), (3.20)

where θ is the center of mass angle with respect to the beam direction. There is a small correction

coming from the fact that there is an angular acceptance of our detector. This correction is called the

attenuation factor and is denoted by Q. This attenuation factor must be included when determining

the coefficients of an experimental angular distribution. The angular distribution function will now

have the following form [1]:

W (θ) = 1 + (0.16 ± 0.03)QP2(cosθ), (3.21)

where

Q =

∫ βmax

0 P2(cos(β))η(β, E) sin(β)dβ
∫ βmax

0 η(β, E) sin(β)dβ
. (3.22)

The angle between the detector symmetry axis and the direction of an emitted α-particle is denoted

by β [1]. The maximum value of this angle for our running geometry is βmax = 5.25◦, resulting in

an integral with the limits
∫ βmax=5.25◦

0 . It was shown in Sec. 3.2.2 that the detector has an intrinsic
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efficiency of unity, or η(β, E) = 1, which simplifies Eq. 3.22 to give:

Q =

∫ 5.25
0 P2(cos(β)) sin(β)dβ

∫ 5.25
0 sin(β)dβ

=

∫ 5.25
0

1
2 [3(cos β)2 sin β − sin β]dβ

∫ 5.25
0 sin(β)dβ

=
−1

2 [(cos β)3 − cos β]5.25
0

−[cos(β)]5.25
0

= 0.9937 (3.23)

Now that the attenuation factor has been calculated, it is possible to find W(θ) for the 17O(p,α)14N

measurement. Recall from Sec. 3.2.1 that the beam throughout this experiment was slightly off center.

This was seen by looking at the beam on target through the target chamber window. It was estimated

that the beam could be up to 0.64 cm off center (or 0.32± 0.32 cm). Combined with the 45◦ angle of

the target, this results in a final detection angle of θcm = 133.6◦, which gives:

W (133.6) = 1 + (0.16 ± 0.03)(0.9937)P2(cos(133.6)) = 1.0339

and

σW (θ) = (0.03)(0.9937)P2(cos(133.6)) = 0.00636

Therefore, the angular distributions functions are W
17O(θ) = 1.0339 ± 0.0064 and W

18O(θ) = 1.

3.5.5 Relative Detection Efficiencies

Since the reaction rate assumes the center of mass frame, the resonance strength should also be

calculated in center of mass units. Thus the measured efficiency of the detector must be transformed

to the center of mass frame, which requires a differential solid angle that can be calculated using a

kinematics code. For this calculation, the code RKIN was used. The conversion from lab efficiency
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θlab
18O(p, α) :

(

dΩlab

dΩcm

)

17O(p, α) :
(

dΩlab

dΩcm

)

130.2 1.0302 1.0649

132.6 1.0317 1.0681

135.0 1.0331 1.0712

Table 3.2: Lab to Center of mass conversion factors for the range of possible detection angles.

to center of mass efficiency is given by :

ηcm = ηlab

(

dΩ
cm

dΩlab

)

, (3.24)

where ηcm and ηlab are the detector efficiencies in the center of mass and lab systems, respectively.

Since the intrinsic efficiency of these silicon detectors is 1, the lab efficiency is equal to the geometric

efficiency. The geometric efficiency is independent of the energy of the incoming particle, which gives

a simple relation for the ratio of detector efficiencies:

η151

η193
=

ηgeometric
(

dΩcm

dΩlab

)151

ηgeometric
(

dΩcm

dΩlab

)193 =

(

dΩlab

dΩcm

)193

(

dΩlab

dΩcm

)151 , (3.25)

where η151 and η193 refer to the α-particle detection efficiency at proton bombarding energies of

Elab
r = 151 and 193 keV, respectively and

(

dΩcm

dΩlab

)

is a function of detection angle. Recall from Sec.

3.2.1 that there is some uncertainty in the incoming beam angle, resulting in a range of possible

detector angles. The beam was off center by up to 0.64 cm corresponding to a lab angle of 132.6◦ ±

2.4◦. Tab. 3.2 gives the lab to center of mass correction factors for this range of angles. Thus, the

values for the lab to center of mass conversion factor become
(

dΩlab

dΩcm

)151
= 1.0317 ± 0.0015 and

(

dΩlab

dΩcm

)193
= 1.0681 ± 0.0032. The ratio of detector efficiencies for the measurements of the Elab

r

= 151 keV resonance in 18O(p,α)15N and the Elab
r = 193 keV resonance in 17O(p,α)14N can now be

calculated using Eq. 3.25. This gives,

η151

η193
= 1.0353 ± 0.0034. (3.26)
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3.5.6 The Strength of the Elab
r = 193 keV Resonance in 17O(p,α)14N

Eq. 3.8 and the ratios calculated in Secs. 3.5.1 - 3.5.5 allow for calculation of the 193 keV

resonance strength in 17O(p, α)14N as shown below:

ωγpα(151) = (0.167 ± 0.012) eV;

ϵ193eff

ϵ151eff

= 1.013 ± 0.054;

η151

η193
= 1.0353 ± 0.0034;

Nα(193)

Nα(151)

Nb(193)

Nb(151)
= 0.00772 ± 0.00040;

(

λ151

λ193

)2

= 1.2730 ± 0.0060 and

W (193) = 1.0339 ± 0.0064.

Inserting these values into Eq. 3.8 gives,

ωγpα(193) = (0.167)(1.013)(1.2730)(0.00772)(1)(1.0353)
1

1.0339

ωγpα(193) = (1.66 ± 0.17) × 10−3 eV. (3.27)

This result is in agreement with the value from Chafa et al. [19, 21] and a subsequent measurement

performed at ORNL [25] using a completely different technique.

3.6 Geant4 Simulations of Silicon Detector Response

In an effort to understand the shape of the α-particle peak seen in the MCA spectra for this exper-

iment, Monte Carlo simulations were performed using a modeling code called Geant4 [26]. The first

simulation was straightforward and involved the use of an isotropic distribution of 997 keV α-particles

(the energy of the outgoing α-particles from the 193 keV resonance in 17O(p,α)14N) originating from

the target position and passing through a mylar foil prior to reaching the detector. The first question

was whether there would be any effect on the efficiency of the silicon detector based on the energy

of the incoming α-particles and the straggling in the mylar foil. The experimental efficiency was
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Figure 3.9: Simulated (top) and measured (bottom) α-particle spectrum for the Elab
r = 193 keV reso-

nance in 17O(p,α)14N.

measured using a 241Am source which produces α-particles with an energy of Eα ≈ 5.5 MeV, while

the energy of interest for the α-particles from the Elab
r = 193 keV resonance in 17O(p,α)14N and the

the Elab
r = 151 keV resonance in 18O(p,α)15N are Eα ≈ 1.0 MeV and Eα ≈ 3.2 MeV respectively. A

change in energy was found to affect the detection efficiency by less than 1%.

Figure 3.9 shows a measured spectrum and a simulated run using Geant4 with the assumption

of a perfectly uniform 2.0 µm thick mylar foil positioned before the detector. The full width at half

maximum of the simulated spectrum gives a resolution of 21 keV, while the width of the measured

peak corresponds to a resolution of 87 keV. The simulated spectrum in Fig. 3.9 does not include the

intrinsic resolution of the silicon detector measured to be ≈ 20 keV using the 241Am source discussed

previously.

Further simulations were performed in an effort to understand the discrepancy in resolution ob-

served between the simulated and experimental data. The first consideration was that the detector had

an angular acceptance of 5.2◦. Calculating the difference in energy of the α-particles incident over

this range of angles resulted in a difference of less than 10 keV. This was not sufficient to account for

the 87 keV resolution seen in the measured spectrum. Apart from reaction kinematics, the only other
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Figure 3.10: Simulated α-particle spectra for the 193 keV resonance in 17O(p,α)14N, for different

thicknesses of the mylar foil placed in front of the silicon detector. The wide blue curve is the mea-

sured spectrum. The narrower green, black and red spectra correspond to simulations of 1.85, 2.00

and 2.15 µm thick mylar foils, respectively.

explanation for the loss of resolution is an inhomogeneity in the mylar foil used to cover the detector.

The uncertainty in mylar foil thickness was measurable by simulating a series of foil thicknesses and

matching the resulting spread to the energy width of the measured spectrum.

Figure 3.10 shows the results of the simulations for three different thicknesses of the mylar foil:

1.85, 2.00 and 2.15 µm. The wider underlying blue curve is the measured α-particle peak. The

simulations demonstrate that the width of the measured α-particle spectrum may be explained by

inhomogeneity of the mylar foil. The range of mylar thickness simulated, 2.00 ± 0.15 µm, is well

within the tolerance quoted by the supplier. This suggests that the uniformity of foil used is extremely

important for the measurement of very weak resonances. Simulations confirm that this is the main

factor contributing to the resolution of the measured spectra.

The work described in this chapter has been published in Newton et al. [27] to which the reader

is referred for further details.
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4 Direct Capture in 17O(p,γ)18F

4.1 The Current Landscape

Recall that the peak temperature range of interest for classical novae is T = 0.1 - 0.4 GK. This

corresponds to Gamow peaks with positions of E0 = 103 - 261 keV. The three lowest lying resonances

for this reaction are positioned at Elab
r = 70, 193 and 519 keV. The resonance strengths have either been

experimentally measured or calculated with experimental parameters. The 193 keV resonance lies in

the center of the Gamow peak for classical novae. It is shown, however, in Ref. [7] that the direct

capture process provides the dominant contribution to the total reaction rate at these temperatures.

This is unusual, since a resonance inside the Gamow window is generally found to be the dominating

contributor. Thus, it is crucial to determine the direct capture contribution to the total cross section if

the overall reaction rate of 17O(p,γ)18F is to be accurately calculated at nova temperatures.

The only literature data for the direct capture contribution at these energies is shown in Fig. 4.1,

which is a reproduction of Fig. 3 from Ref. [7]. The experimental data consist of four points measured

by Rolfs [6] and one low-energy point from Chafa et al. [21]. It is argued by Fox et al. [7] and

revisited by Chafa et al. [21] that inconsistencies exist with the data presented by Rolfs. The dotted

line in Fig. 4.1 is the estimated direct capture S-factor contribution quoted by Rolfs. There are also

two resonances located at Ecm
r = 557 and 677 keV whose combined contributions are included as the

large-dashed curve. The low energy blue point at Ecm
r = 180 keV measured by Chafa et al. [21] is

a total cross section measurement taken as an off-resonance run at the front edge of the Ecm
r = 183

keV resonance. This point is consistent with the direct capture curve of Rolfs. This is not surprising,

however, since the blue point has error bars of ≈ 50%. Fox et al. [7] have argued that it is unclear if

the Rolfs’ data have been corrected for the existence of the Ecm
r = 557 and 677 keV resonances, since

because of the tails of these resonances, he performed the majority of his cross section measurements
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Figure 4.1: The current literature direct capture S-factor data. The black points are from reference [6]

with their associated 18% uncertainty. The blue point is taken from reference [21]. The large-dashed

curve is the contribution to the total S-factor from the broad resonances at Ecm
r = 557 and 677 keV.

The small-dashed (flat) curve is the direct capture contribution calculated in reference [7]. The solid

black curve is the sum of the small-dashed curve and the large-dashed curve.
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at higher energies. Chafa et al. [21] also argue that Rolfs’ data are assumed to be totally dominated

by the direct capture process. Reference [7] suggests that the energy dependence of the direct capture

curve presented by Rolfs is inconsistent with the presence of these resonances. In addition, the low

energy upturn of the direct capture of Rolfs could not be reproduced by Fox et al. [7] using either a

square-well or Woods-Saxon potential for the bound state wave function. In Fig. 11 from Ref. [6], the

measured total cross section for the decay of Ex = 937 keV level to the ground state of 18F is shown.

Included in this plot is a solid line that is referred to as the prediction of the direct capture model.

This curve goes right through the four lowest energy data points which are the same points included

in Fig. 4.1. For these reasons, the direct capture S-factor curve from Ref. [6] was disregarded in Fox’s

calculation of an S-factor prediction. This calculation uses the literature values of experimentally

measured spectroscopic factors. The formalism for such calculations is presented in Chap. 1 (see Eq.

1.31) and Ref. [7]. This calculation is not purely theoretical since it uses experimentally measured

spectroscopic factors. The resulting direct capture contribution is included as the dashed line in Fig.

4.1 and amounts to a factor of ≈ 2.5 less than the direct capture contribution of Rolfs. Since there

is a large discrepancy between these values and the S-factor contribution to the total reaction rate

dominates near these nova energies, a new independent measurement of the nonresonant S-factor at

Ecm < 500 keV is required.

4.2 Experimental Setup

Measurement of the total cross section of 17O(p,γ)18F was performed using the LENA 1 MV

JN model Van de Graaff accelerator to supply proton beams of up to 120 µA on target. The proton

energies ranged from 250 - 530 keV. The bombarding energy was calibrated using six resonances

in three different reactions. These are provided in Tab. 4.1. The data for these resonance energies

were fit to determine a calibration for the analyzing magnet, which regulates the terminal voltage

of the accelerator and thus, the beam energy. A linear fit of E = 6208B2 − 1.65 with a residual

standard error of 0.45 keV was determined for the magnet calibration. In addition, six independent

measurements of the 519 keV resonance in 17O(p,γ)18F were analyzed. These resulted in a standard

deviation of 0.58 keV on the measured resonance energies. Statistical uncertainties on these points
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Reaction Eres (keV)
27Al(p,γ)

326.97 ± 0.05

405.44 ± 0.10
26Mg(p,γ)

292.06 ± 0.09

338.4 ± 0.1

453.8 ± 0.1
18O(p,γ)

150.82 ± 0.09

Table 4.1: Narrow resonances used to calibrate the analyzing magnet and determine the energy reso-

lution of the model JN proton beam.

were ≈ 0.1 keV. Thus the final uncertainty in laboratory bombarding energy is found by summing the

0.45 keV calibration uncertainty in quadrature with the 0.1 keV statistical uncertainty. This gives a

total uncertainty in bombarding energy of 0.46 keV. The measured beam widths associated with these

measurements are presented in Tab. 4.2. Of note, the first measurements of the 17O target resulted

in small beam width values that increased as the accumulated charge on target was increased, finally

reaching a value consistent with those measured for the 18O targets. The measured stoichiometry of

the target region did not vary over the experiment, however, which will be discussed in Sec. 4.2.3.

A “zero degree” target chamber was used, which allowed for a very close geometry between the

target and suppression electrode, since the chamber is simply a cap on the end of the beam line. The

suppression electrode, described in Chap. 3, and the target chamber formed a Faraday cup for beam

integration and a water chamber was located behind the target backing for cooling purposes.

4.2.1 The Detection System

No interference exists between the Elab
r = 557 and 677 keV resonance contributions since they

have different Jπ values of 3+ and 2+, respectively. In addition, the resonances do not interfere with

any of the main direct capture transitions because they have different initial orbital angular momenta.

All major direct capture transitions have angular distributions of the form 1 + a2P2 (cosθ) and interfer-

ence effects involving the major primary transitions will produce nonzero anisotropies proportional to

P2 (cosθ) [28, 6]. A detection angle of 55◦ was selected, since P 2 (cosθ) = 0 at θ = 55◦ and neither of
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Data used for the analyzing magnet calibration

Target Reaction Eres
Lab (keV) Beam Width (keV)

26Mg #5 26Mg(p,γ)27Al 292.1 2.5
26Mg #5 26Mg(p,γ)27Al 338.4 2.5
26Mg #5 26Mg(p,γ)27Al 453.8 2.5
27Al #5 27Al(p,γ)28Si 327.0 2.8
27Al #5 27Al(p,γ)28Si 405.4 3.1

18O 18O(p,γ)19F 150.8 4.3

Data taken with oxygen targets

Target Reaction Eres
Lab (keV) Beam Width (keV)

18O #2 18O(p,γ)19F 150.82

Yield Curve 2 3.28 ± 0.31

Yield Curve 3 3.28 ± 0.27

17O #JN2 17O(p,γ)18F 518.9

Yield Curve 1 1.63 ± 0.15

Yield Curve 2 1.53 ± 0.03

Yield Curve 4 1.67 ± 0.11

Yield Curve 5 1.59 ± 0.11

Yield Curve 14 4.29 ± 0.20

Yield Curve 15 4.21 ± 0.14

Table 4.2: Measured beam spreads for several different targets and resonances analyzed with the JN

accelerator.
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Figure 4.2: Shop drawing of the 5 cm lead shield and LENA HPGe detector in running geometry. The

drawing is complements of Johnny Cesaratto.
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these interference terms will affect this measurement at this detection angle. There may, however, be

more complicated anisotropies produced by the weaker direct capture transitions. The fragmentation

of these transitions, along with the close proximity of the detector to the target, should make these

effects negligible. The LENA HPGe detector was placed at an angle of 55◦ and a distance of 3.6 cm

from the center of the detector face to the center of the target. The count rates expected for this ex-

periment allowed for a singles germanium measurement provided that the detector was covered with

5 cm of passive lead shielding. Figure 4.2 is a schematic of the lead shield designed for this project.

The data were obtained using the acquisition system JAM. The electronics required only one energy

signal and one timing gate. An unshielded detector background rate of 7863 counts
minute between Eγ =

600 keV and 3 MeV was seen in the singles Ge spectrum. The detector background count rate was

reduced to 165 counts
minute when employing the lead shield, corresponding to a factor of 47.7 reduction in

background.

4.2.2 Detector Efficiency

The γ-ray detection efficiency in the running geometry was measured using three radioactive

sources and the 14N(p,γ)15O reaction, and was simulated using the Monte Carlo code Geant4 [26].

Two types of detection efficiencies were evaluated. Peak efficiency is the probability of detecting

the full energy of a γ-ray emitted from a source. Total efficiency is the probability of detecting a

nonzero energy of an emitted γ-ray. Combining the simulations and measurements, the peak and total

efficiencies as a function of γ-ray energy were constructed. The sum-peak method for a 60Co source

described in Ref. [29] was employed. The advantage of this method is that the source activity cancels

out of the final equations and the measurement precision is determined solely by counting statistics.

The peak efficiency of detecting the Eγ = 1173 keV γ ray, η
p
γ1173, becomes

η
p
γ1173 =

1

W (θ)

√

Nγ1173N2
γ2505

NtotalNγ1332Nγ2505 + Nγ1173N2
γ1332

. (4.1)

The number of counts in the Eγ = 1173 and 1332 keV full energy peaks of the 60Co spectrum are

given by Nγ1173 and Nγ1332, respectively. The number of counts in the full energy sum peak located

at Eγ = 2505 keV is denoted by Nγ2505 and the total number of room background subtracted counts
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Nγ1173 Nγ1332 Nγ2505 Ntotal W(θ)

112374 ± 349 105990 ± 330 2124 ± 47 750690 ± 866 1.0494

η
p
γ1173 η

p
γ1332 ηt

1332

0.01744 ± 0.00031 0.01644 ± 0.00029 0.0829 ± 0.0012

Table 4.3: Measured efficiencies for Eγ = 1173 and 1332 keV lines from a 60Co source.

due to the 60Co source from Eγ = 0 - 2505 keV is denoted by Ntotal. The measured γ-ray spectra

were extrapolated to zero pulse height for the determination of Ntotal to account for the low energy

thresholds of the electronics. Similarly, for the Eγ = 1332 keV γ-ray the peak efficiency is

η
p
γ1332 =

1

W (θ)

√

Nγ1332N2
γ2505

NtotalNγ1173Nγ2505 + Nγ1332N2
γ1173

. (4.2)

The average total efficiency due to both the Eγ = 1173 and 1332 keV lines is given by

ηt
γ1332 =

1

W (θ)
− 1

W (θ)

√

Nγ1173Nγ1332

NtotalNγ2505 + Nγ1173Nγ1332
. (4.3)

The angular correlation coefficient, W (θ), is a function of the distance between the detector and target,

the geometry of the HPGe crystal and the angular distribution of the radiation from the source [1, 29].

The angular correlation attenuation factor, described in Sec. 3.5.4, was calculated using a code written

by Richard Longland that performs an analytical integration of the angular correlation between the

two emitted γ-rays over the solid angle covered by the detector. Using Eqs. 4.1, 4.2 and 4.3, along

with the measured count rates listed in Tab. 4.3, the peak and total efficiencies of an Eγ = 1173 and

1332 keV γ-ray were calculated. The results are presented in Tab. 4.3. These measured efficiencies

were then used to normalize all other measured and simulated efficiencies.

The next step was to use 56Co and 152Eu sources to construct a relative efficiency curve. Since

the 56Co source was weak it could be placed in the target position with the HPGe detector in the

normal running position. No pile-up was observed in the detector. This close geometry required the

application of coincidence summing corrections to the data. Coincidence summing occurs when two

or more γ-rays from the same decaying nucleus interact with the detector. This is more likely to

occur at high γ-ray detection efficiencies. The effects of coincidence summing will depend on the
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total and peak detection efficiencies and can be corrected for if the branching ratios of each decay are

known. These corrections were performed using a C program, sump.c, written by Richard Longland,

following the matrix formalism presented in Ref. [30]. The summing corrected data points were

then fit by an R code and normalized to the measured 60Co efficiencies. The 152Eu source was very

strong, which required positioning the detector at a distance of 30 cm from the source, to reduce the

effects of pile up. Summing corrections were, therefore, negligible and the detection efficiencies were

simply scaled to the normalized 56Co data using the Eγ = 1112 and 1299 keV lines from 152Eu. This

produced a normalized efficiency curve for Eγ = 120 - 3600 keV.

The higher energy efficiencies were measured using the Elab
r = 278 keV resonance in 14N(p,γ)15O.

This reaction produces decays ranging in energy from Eγ = 763 - 7556 keV and spans the entire range

of energies needed for measurement of the direct capture component in 17O(p,γ)18F at Elab
p ≤ 500

keV. These data were summing corrected and normalized using the normalized 56Co fit and the Eγ =

1380 and 2373 keV lines. The result is a data set of measured efficiencies ranging from Eγ = 120 keV

- 7.56 MeV.

The running geometry was then simulated in Geant4 and the peak and total efficiencies were esti-

mated. The resulting peak and total efficiencies were normalized to the measured Eγ = 1173 and 1332

keV efficiencies. Figure 4.3 displays the normalized Geant4 peak efficiency simulations, the mea-

sured efficiencies from 56Co, 152Eu and the 14N(p,γ)15O resonance data. The simulated efficiencies

correspond well with the experimental data with the exception of efficiencies measured at Eγ < 400

keV. This suggests that either the material thicknesses modeled in Geant4 are incorrect, or the actual

detector geometry is incorrectly modeled. The 152Eu source data were collected at a greater distance

from source to detector than the running geometry. The first test was then to adjust the detector posi-

tion in the Geant4 simulation and compare the simulated and measured efficiencies at Eγ < 400 keV.

Simulations for detector to target distances of 28 and 33 cm were normalized using the same method

as the simulations of the running geometry. Figure 4.4 compares the results of these simulations to the

measured efficiencies from 152Eu. Simulating the detector at a greater distance from the source pro-

duces efficiencies that more closely correspond with the measured efficiencies than the simulations of

the original running geometry. This suggests that the original discrepancy between the running geom-

etry simulations and the measured efficiencies at Eγ < 400 keV can be explained by a large source to
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Figure 4.3: Peak efficiency measurements in the 55◦ detection geometry compared to a normalized

Geant4 simulation.

detector distance for the 152Eu data. Also, the major peak of interest in the 17O(p,γ)18F direct capture

measurement will be the decay of the first excited state to the ground state (Eγ = 937 keV). At this

energy the measured and simulated efficiencies are in agreement.

4.2.3 Targets

The oxygen targets used for this experiment were made by anodization of etched tantalum back-

ings with isotopically enriched water. This process is described in App. A.2. The 18O target was

anodized with water enriched to 97.5% in 18O and is the same target used as the reference for the

(p,α) resonance strength measurements described in Chap. 3. A representative yield curve of the 151

keV resonance in 18O(p,γ)19F is shown in Fig. 4.5. The coefficients listed were found by fitting the

yield curve using an R code written by Richard Longland. At Elab
p = 151 keV the target thickness was
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Figure 4.5: Sample yield curve of the Elab
r = 151 keV resonance in 18O(p,γ)19F using the enriched

18O target. Fit parameters were calculated using an R code written by Richard Longland.

33 keV. The reported literature value for this resonance strength, ωγ = (9.7 ± 0.5)×10−4 eV [1], was

reproduced after summing corrections, resulting in a value of ωγ = (9.3 ± 1.1)×10−4 eV.

A new 17O target was prepared for this experiment using water enriched to 91.2% in 17O and

an anodization voltage of 30 V. A representative yield curve of the Elab
p = 519 keV resonance in

17O(p,γ)18F is provided in Fig. 4.6. Multiple yield curves were taken for this resonance and the target

thickness was consistently found to be ≈ 4 - 5 keV at Elab
p = 519 keV. Figure 4.7 shows the variation

of target thickness over the accumulated charge on target for this experiment. The red points were not

used when generating the linear fit to these data. These points varied significantly more than the black

points and were collected with an unstable beam at Elab
p = 519 keV. Calculation of the strength of the

Elab
r = 519 keV resonance, performed using the summing corrected data from an early yield curve,

resulted in ωγ = 0.0137 ± 0.0022 eV, which is in agreement with the literature [7]. Results of these
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Figure 4.6: Sample yield curve of the Ecm
r = 519 keV resonance in 17O(p,γ)18F using the enriched

17O target. Fit parameters were calculated using an R code written by Richard Longland.

target tests also revealed a constant target stoichiometry. Thus it was determined to be a stable target

and for the remainder of this chapter will be the 17O target of reference.

4.3 Data Analysis and Results

4.3.1 Measured HPGe γ-Ray Spectra

Data were collected at six different bombarding energies. The accumulated charge and run times

are presented in Tab. 4.4. Two types of γ-rays were analyzed in this experiment. “Primary γ-rays”

are either the first decay of the excited 18F nucleus in a resonant capture or the γ-ray that is emitted

along with the direct nonresonant capture of the incoming proton into a final bound state of 17O + p.
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In either case, the resulting energy for a primary γ-ray is

Eγ = Q + Ecm
p − Ex, (4.4)

where Q = 5606.5 is the Q-value of 17O(p,γ)18F; Ecm
p is the proton bombarding energy in the center

of mass system and Ex is the excitation energy of the level of capture in 18F. “Secondary γ-rays” are

the subsequent decays of the 18F after the primary decay of the nucleus. The resulting energy for a

secondary γ-ray is

Eγ = Exi
− Exf

, (4.5)

where Exi
and Exf

are the excitation energies of the initial and final levels in the decay of the 18F

nucleus, respectively.

Sample spectra for bombarding energies of Elab
p = 400, 325 and 275 keV are shown in Fig. 4.8.

Peaks corresponding to decays in 18F resulting from 17O(p,γ)18F are shown in red. The secondary

decays are labeled with the excitation energies of the initial and final states. The primary decays are

labeled with R/DC (for “resonant” or “direct capture”) and the excitation energy of the final level

of capture. Peaks corresponding to decays from the 12C(p,γ)13N reaction are also included in this

plot. Carbon and fluorine were the major contaminants in the anodized targets. See Ref. [31] for an

extensive discussion of contamination of these tantalum backings, where it was found that resistively

heating them is critical for minimizing fluorine and carbon contamination. Room background peaks

are marked with B and were easily identified when comparing spectra from successive runs with a

room background spectrum. A peak from 23Na(p,γ)24Mg was only visible in the Elab
p = 325 keV

spectrum. This reaction has a resonance near 325 keV and the peak corresponds to the decay to the

ground state of the Ex = 1368 keV state in 24Mg. The data presented in Fig. 4.8 demonstrate a clear

and rapid reduction in the number of visible 17O(p,γ)18F reaction decays with decreasing bombarding

energy. In addition, as seen in the Eγ = 937 keV peak, a sharp decline in cross section is observed

with decreasing bombarding energy.

A high γ-ray energy regime of the Ge spectra collected for Elab
p = 400, 450 and 500 keV is

presented in Fig. 4.9. The three background peaks correspond to the decay of the Ex = 6.13 MeV

state in 16O, which is populated by the 19F(p,αγ)16O reaction. The marked peaks correspond to

81



Elab
p (keV) Qaccum (µC) Run Time (hours)

500 3211991 14.6

450 3617098 14.0

400 4235046 14.0

325 3780708 15.1

300 4093731 14.1

275 5001844 14.1

Table 4.4: Integrated charge on target and total run times for bombarding energies of 275 - 500 keV.
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Figure 4.8: Sample γ-ray spectra for bombarding energies of Elab
p = 400 keV (top), 325 keV (middle)
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the full energy peak at Eγ = 6.13 MeV and the associated single and double escape peaks. Strong

resonances exist in 19F(p,αγ)16O at Ecm
r = 459.5 and 323.3 keV, which may both contribute to this

beam induced background. The existence of these resonances and the differences in accumulated

charge on target for the three runs account for the relative intensities of the fluorine contamination

background peaks at Elab
p = 500, 450 and 400 keV. These beam-induced background peaks presented

a significant obstacle to this experiment as a result of their effect on the resolution of one of the major

primary transition peaks in 17O(p,γ)18F. The capture into the first excited state at Ex = 937 keV is

marked in red and is visible in the Elab
p = 400 and 500 keV spectra but has completely merged with the

double escape peak in the Elab
p = 450 keV spectrum. The capture into the Ex = 937 keV level is one

of the strongest transitions for each of the measured bombarding energies. This missing contribution

can be estimated by interpolation of the five observed contributions and this process will be discussed

later in this chapter.

Calculation of the total S-factor for the 17O(p,γ)18F reaction requires determination of the total

number of proton captures. This can be accomplished by two methods. The first method is counting

the total number of primary captures, since each reaction must begin with a capture prior to 18F decay.

Alternatively, the secondary transitions ending in the ground state may be counted, since each capture

eventually decays to the ground state of 18F. Our calculations have shown that the cross section of

the primary capture to the ground state in 18F is insignificant and can be disregarded for the current

discussion.

Table 4.5 contains a list of the number of observed secondary decays to the ground state in 18F

for each bombarding energy evaluated. The detection efficiency for each secondary γ-ray energy is

also included. The Ex = 2101 keV to ground state transition in the Elab
p = 450 keV spectrum was

indistinguishable from the background associated with 12C(p,γ)13N. The strongest transition visible

at each measured proton energy is the decay of the first excited state, Ex = 937 keV, to the ground

state. This represents the only peak seen at the lowest bombarding energy, Elab
p = 275 keV, and the

only peak with useful statistics at Elab
p = 300 and 325 keV.

Table 4.6 contains a list of the number of primary transitions detected in each of the six runs. The

use of primary decays for determination of the total number of reactions proved more difficult than

using the secondaries for two reasons. First, the branching through the primaries was much more
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Figure 4.9: Sample γ-ray spectra for bombarding energies of Elab
p = 500 keV (top), 450 keV (middle)

and 400 keV (bottom). The peak corresponding to the primary transition to the Ex = 937 keV state

in 18F is marked in red. R/DC refers to resonant or direct capture. The three peaks corresponding to

decay of the 16O nucleus resulting from the 19F(p,αγ)16O reaction are marked.
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Transition Elab
p (keV)

Exi
→ Exf

ηpeak 500 450 400 325 300 275

937 → 0 0.0194 30221(218) 11700(179) 5820(109) 1202(95) 689(51) 456(61)

1042 → 0 0.0186 522(74) 229(107) 197(65)

1081 → 0 0.0183 525(75) 365(123) 144(73)

2101 → 0 0.0127 522(117) 107(71)

2523 → 0 0.0110 1031(68) 344(42) 108(30)

3062 → 0 0.0097 1003(69) 479(42) 243(40) 59(27) 25(10)

3839 → 0 0.0081 1374(78) 472(50) 287(42) 47(27) 30(13)

Table 4.5: Counts for secondary decays to the ground state for each bombarding energy. The notation

denotes Intensity(uncertainty). Excitation energies are in units of keV. Also included are the associated

detection peak efficiency values.

fragmented resulting in more transitions with significant contributions. Secondly, the position of the

primary peaks decreased in energy with decreasing bombarding energy, making it more difficult to

account for room background contributions. Analysis of the total number of proton captures was

further complicated, using either method, by the need to correct for coincidence summing. This

required knowledge of the branching ratios of the primary transitions which were not previously

available. This will be discussed in depth in Sec. 4.3.4.

4.3.2 Effective Interaction Energy

For measuring a direct capture cross section, the interaction energy is more complicated to deter-

mine than with a narrow resonant cross section. All energy dependent quantities can be evaluated at

the resonance energy for a narrow resonance. Since interactions take place over the entire width of the

target when measuring a smoothly varying cross section, an effective interaction energy is necessary.

The effective energy, Eeff , is the energy, corresponding to half of the integrated yield, which separates

the integrated cross section between the bombarding energy, Ep, and the bombarding energy minus

the width of the target, Ep - ∆E, into two equal parts. That is

∫ Eeff

Ep−∆E
σ(E)dE =

∫ Ep

Eeff

σ(E)dE. (4.6)

The width of the target at the bombarding energy, ∆E(Ep), is found by correcting the measured target

thickness at Er = 519 keV, ∆E(519), for the change in stopping power (see Eq. 3.12) from Elab
r = 519
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Transition Elab
p (keV)

R/DC → Exf
500 450 400 325 300 275

R/DC → 937 5919(137) 959(71) 241(48) 117(23) 37(11)

R/DC → 1121 334(48) 186(50)

R/DC → 2101 86(42)

R/DC → 2523 1047(79) 382(52) 148(33)

R/DC → 3062 922(70) 437(41) 305(46) 76(31) 45(15) 18(10)

R/DC → 3358 196(49)

R/DC → 3791 1531(91) 105(55) 33(20)

R/DC → 3839 5194(134) 1654(159) 807(75) 196(44) 122(29)

R/DC → 4116 973(115) 437(129) 289(69)

R/DC → 4398 370(105) 241(57)

R/DC → 4652 341(95)

R/DC → 4753 153(66)

R/DC → 4860 110(84)

R/DC → 4964 544(102) 405(124) 395(86) 137(46)

Table 4.6: Counts for primary transitions for each bombarding energy. R/DC refers to the combination

of resonant and direct capture contributions and excitation energies are in units of keV. The notation

denotes Intensity(uncertainty)

keV to the stopping power at the new bombarding energy, using the following equation [1]:

∆E(519)

ϵeff (519)
=

∆E(Ep)

ϵeff (Ep)
, (4.7)

where ∆E(Elab
res = 519) is obtained from the fit to the target thickness data shown in Fig. 4.7. This

gives:

∆E = 4.748 − 0.0214 ∗ Qaccum (4.8)

It is important to know the proper accumulated charge value, Qaccum, to use for the bombarding

energy of interest. These values are presented in Tab. 4.7 as the “Accumulated BCI Midpoint” for each

bombarding energy. This gives one value of Qaccum for each bombarding energy. The corresponding

Eres = 519 keV target thickness was then calculated using Eq. 4.8, yielding a unique target thickness

at 519 keV for each of the six bombarding energies. These values are listed in Tab. 4.7. The target

thickness was then corrected using Eq. 4.7, to give the target thickness for each bombarding energy

at the time the measurement was performed. These values are included in Tab. 4.8.
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Elab
p Accumulated BCI Accumulated BCI ∆E(Elab

r = 519)

(keV) Range (µC) Midpoint (µC) (keV)

400 1286560 - 5550983 3418771.5 4.67 ± 0.15

500 5746554 - 8958545 7352549.5 4.59 ± 0.15

450 9158208 - 12775306 10966757 4.51 ± 0.16

325 13024117 - 17208575 15116346 4.42 ± 0.17

300 18093079 - 22505137 20299108 4.31 ± 0.19

275 22645148 - 27811369 25228259 4.21 ± 0.21

Table 4.7: Midpoints of the accumulated BCI ranges and associated target widths at Elab
r = 519 keV

resonance for each bombarding energy evaluated.

Elab
p (keV) ϵlab

eff (Ep)
(

eV cm2

atom

)

∆E(Elab
p ) (keV) Ecm

eff (keV)

500 (19.37 ± 0.74)×10−15 4.67 ± 0.30 469.88 ± 0.45

450 (20.39 ± 0.78)×10−15 4.82 ± 0.31 422.59 ± 0.46

400 (21.50 ± 0.82)×10−15 5.26 ± 0.33 375.19 ± 0.46

325 (23.53 ± 0.89)×10−15 5.45 ± 0.36 304.31 ± 0.46

300 (24.35 ± 0.93)×10−15 5.49 ± 0.38 280.70 ± 0.47

275 (25.19 ± 0.96)×10−15 5.54 ± 0.40 257.09 ± 0.47

Table 4.8: Effective interaction energies and stopping power corrected target thicknesses for each

experimental bombarding energy. The listed stopping powers are calculated using the bombarding

energies.

Linear variations in the cross section from σ1 = σ(Ep) to σ2 = σ(Ep - ∆E), result in [1, 3]:

Eeff = E0 − ∆E(Ep) + ∆E(Ep)

[

σ2

σ2 − σ1
+

√

σ2
1 + σ2

2

2 (σ1 − σ2)
2

]

. (4.9)

The total cross section curve from Fig. 4.1 was interpolated to find reasonable values of σ1 and σ2.

The requirement of linearity of the cross section for the use of Eq. 4.9 was the major reason for the

choice of a target of ≈ 5 keV thickness. The results of the calculations of the effective interaction

energies, Eeff , are presented in Tab. 4.8.
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4.3.3 Cross Sections Before Summing Corrections

The cross section at the effective interaction energy, σ(Ecm
eff ), for each individual transition was

calculated by combining the data from Tab. 4.8 and the following expression [1]

σ (Eeff ) =
Y (E)

n
= Y (E)

ϵeff (E)

∆ (E)
. (4.10)

The reaction yield is denoted by Y(E) and n is the number of target nuclei per unit area. The cross

section is converted to an astrophysical S-factor by Eq. 1.2. The values necessary for calculation of

the S-factor contributions from the secondary transitions are provided in Tabs. 4.5 and 4.8. These

S-factor contributions are shown as black data points in Fig. 4.10. Each level in 18F from which

a decay to the ground state was detected is included. As discussed previously, some transitions are

missing due to varying background contributions and rapidly declining reaction cross sections. The

red circles represent reasonable, by eye, estimates of the functional energy dependence of the S-factor

contribution for the missing levels. These values are only used to find an approximate contribution

for missing levels. Figure 4.11 shows the total S-factor contributions from all secondary decays to

the ground state. These data points constitute the sum of the contributions from each of the seven

individual levels. The black points represent the sum of the measured contributions and the red points

are the sum of the contributions including the estimated missing transitions. The blue points show the

direct capture contributions measured by Rolfs [6] with the associated uncertainty of 18%. The latter

data were first presented in Fig. 4.1. Figure 4.11 provides a first indication that we do not reproduce

the results of Rolfs [6].

S-factor contributions from each observed primary transition were calculated using the values

from Tabs. 4.6 and 4.8. These are shown as the black points in Figs. 4.12 and 4.13. The red curves

represent polynomial fits to the measured S-factor contributions and in some cases a green curve is

also included which represents a second reasonable description of the data. These fits were then used

to find the red points, which are estimated values of the contributions from missing transitions. The

individual measured transitions were summed and displayed as black points in the bottom right plot

in Fig. 4.13. The red points constitute the total S-factor contribution including the missing transitions.

The Elab
eff = 423 keV S-factor is missing nearly half of the estimated contribution as a result of the

88



250 300 350 400 450 500
0

5

10

15

250 300 350 400 450 500
0

0.2
0.4
0.6
0.8

1

250 300 350 400 450 500
0

0.2

0.4

250 300 350 400 450 500
0

0.2
0.4
0.6
0.8

1

250 300 350 400 450 500
0

0.1
0.2
0.3
0.4
0.5

250 300 350 400 450 500
0

0.5

1

1.5

2

250 300 350 400 450 500
0

0.1
0.2
0.3
0.4
0.5

Effective E
p
 (keV)

S
-f

a
c
to

r 
(k

e
V

 b
)

E
x
 = 937 keV

E
x
 = 1042 keV

E
x
 = 1081 keV

E
x
 = 2101 keV

E
x
 = 2523 keV

E
x
 = 3062 keV

E
x
 = 3839 keV

Effective E
p
 (keV)

CM

CM

Figure 4.10: Individual S-factor contributions from secondary decays to the ground state (Ex → 0).

Figure 4.11: Total S-factor contributions from all secondary decays to the ground state (Ex → 0).

89



200 300 400 500

2

4

6

8

10

200 300 400 500

0.2

0.4

0.6

0.8

1

200 300 400 500

0.2

0.4

0.6

0.8

1

200 300 400 500

0.1

0.2

0.3

0.4

200 300 400 500

0.4

0.8

1.2

1.6

200 300 400 500

0.2

0.4

0.6

0.8

1

200 300 400 500

0.1

0.2

0.3

0.4

200 300 400 500

0.5

1

1.5

2

200 300 400 500
0

1

2

3

4

5

E
x
 = 937 keV E

x
 = 1121 keV

E
x
 = 4116 keV

E
x
 = 2101 keV

E
x
 = 2523 keV E

x
 = 3062 keV E

x
 = 3358 keV

E
x
 = 3791 keV E

x
 = 3839 keV

S
 -

 F
a
c
to

r 
C

o
n
tr

ib
u
ti
o
n
 (

k
e
V

 b
)

E
p
 (keV)

CM

Figure 4.12: S-factor contributions from individual primary transitions I.

target fluorine contamination. In addition, the total S-factor contributions at the effective interaction

energies Elab
eff = 304, 281 and 257 keV are adjusted significantly more than they were when analyzing

the secondary transitions. This is because the primary contributions are far more fragmented, while the

vast majority of the secondary contributions are found in the Ex = 937 keV to ground state transition.

The adjustments to the primary S-factor contributions may be overestimated for the captures into

the Ex = 2101, 3358, 4652, 4753 and 4860 keV levels. These are estimated based only on a single

transition seen at Ecm
eff = 470 keV. These are not final S-factor contributions because they have yet to

be corrected for coincidence summing and the effects of this potential overestimation will be further

explored. The blue points in Fig. 4.13 are the direct capture contributions to the total S-factor from

Ref. [6]. Again, the total measured S-factor contribution, even after correction for missing transitions,

does not agree with the direct capture S-factor reported by Rolfs.
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Figure 4.13: S-factor contributions from individual primary transitions II.
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4.3.4 Coincidence Summing Corrections

As discussed in Sec. 4.2.2 for the analysis of the 56Co source data, since our detector was located

in a close running geometry, coincidence summing effects must be accounted for. The summing

corrections were performed using two versions of a C code written by Richard Longland. The first is

the same code that was used to summing correct the 56Co and 14N(p,γ)15O data used for the detector

efficiency measurements discussed in Sec. 4.2.2. These codes are both based on the matrix formalism

presented in Ref. [30] and the specific codes and their use are discussed in detail in Ref. [32]. To

properly correct the measured data for coincidence summing, it is necessary to know the detector

peak and total efficiencies for each primary and secondary branch in the decay of 18F. The primary

and secondary branching ratios are also needed. The secondary transition branchings are well known

[33] and the detector peak and total efficiencies were measured and simulated (see Sec. 4.2.2). The

primary branching ratios are, however, not known. They result from a combination of capture into

the tails of the 557 and 677 keV resonances and direct capture transitions. These primary branches

can be found using the matrix formalism of Ref. [30]. This was accomplished by varying the input

primary branching ratios needed for the calculations of the summing corrections, iteratively, until the

observed number of transitions in the measured spectra were reproduced by the summing corrections

code. The code sumb.c was updated to allow for decays which have nonzero branching but are not

observed in the measured spectra.

Reasonable starting values for the primary branching ratios were needed for input to sumb.c.

These starting values were found by taking the ratio of the S-factor contribution from an individual

primary transition to the total contribution from all observed primary transitions. These individual

primary transitions were shown in Figs. 4.12 and 4.13. The relative S-factor contributions from each

individual primary transition are presented in Tab. 4.9. These values were used as the initial inputs to

the sumb.c code for the primary branching ratios. They were iteratively adjusted as described above

to find the true primary branching ratios. These output primary branching ratios from sumb.c were

all within the original uncertainties of the input primary branchings for the Elab
p = 325, 400 and 500

keV data. Thus, the current method for estimating the primary branching ratios from the individual

S-factor contributions produced accurate values at these bombarding energies. For the Elab
p = 450 keV
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Transition Elab
p (keV)

R/DC → Ex 500 450 400 325 300 275

R/DC → 937 0.47(3) 0.43(5) 0.39(3) 0.39(6) 0.32(5) 0.17(5)

R/DC → 1121 0.046(9) 0.068(12) 0.07(2) 0.07(2) 0.07(2) 0.08(3)

R/DC → 2101 0.005(3) 0.010(5) 0.012(6) 0.013(6) 0.014(7) 0.016(8)

R/DC → 2523 0.060(7) 0.058(10) 0.043(10) 0.02(2) 0.02(2) 0.03(3)

R/DC → 3062 0.046(6) 0.058(9) 0.078(14) 0.08(3) 0.08(3) 0.05(3)

R/DC → 3358 .009(2) 0.016(5) 0.021(6) 0.022(6) 0.023(7) 0.028(8)

R/DC → 3791 0.063(7) 0.052(13) 0.022(11) 0.019(19) 0.04(4) 0.08(4)

R/DC → 3839 0.211(19) 0.18(2) 0.16(2) 0.16(4) 0.16(4) 0.19(4)

R/DC → 4116 0.036(6) 0.043(13) 0.054(13) 0.056(18) 0.061(19) 0.07(2)

R/DC → 4398 0.013(4) 0.027(8) 0.042(10) 0.044(12) 0.049(12) 0.060(14)

R/DC → 4652 0.011(3) 0.019(6) 0.025(7) 0.025(8) 0.027(8) 0.032(10)

R/DC → 4753 0.005(2) 0.008(4) 0.011(5) 0.011(5) 0.012(5) 0.014(6)

R/DC → 4860 0.003(2) 0.006(4) 0.007(6) 0.007(6) 0.008(6) 0.010(7)

R/DC → 4964 0.015(3) 0.029(9) 0.054(13) 0.09(4) 0.12(4) 0.17(4)

Table 4.9: Initial values for the primary branching ratio inputs into sumb.c. These represent the

relative contributions of primary S-factor transitions to each excited level in 18F. The transitions are

listed in column one with R/DC for the combination of resonant and direct capture and Ex is the

excitation energy in keV.

data, however, the original input branching ratio for the primary transition to the Ex = 937 keV level

was strongly adjusted by sumb.c. There existed no experimentally observed value for this transition

to constrain the branching ratio adjustment and given the success of the Elab
p = 500, 400 and 325 keV

estimated branching ratios, the original primary branching estimate for transition to the Ex = 937 keV

level was used instead of the adjusted value. Some branching ratios for the primary transitions at Elab
p

= 300 keV were varied by sumb.c slightly outside the uncertainties on the original input estimates,

but this was expected due to the large number of unobserved primary transitions at this bombarding

energy. The original primary branching ratios for the Elab
p = 275 keV data were analyzed separately

as a result of extreme over-correction of the primary branchings by sumb.c.

The second code used for this analysis, sum.c, is a simpler version of the matrix formalism used

in sumb.c. This code assumes that all branchings are known and fixed and calculates a summing

corrected total number of disintegrations of the final nucleus. The results of the branching ratio ad-

justments by sumb.c can be used as inputs to sum.c. This process was straightforward for the Elab
p =

325, 400, 450 and 500 keV data. The Elab
p = 300 keV data were tested for the effects of assuming a
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Elab
p Ecm

eff sum corrected 937 → 0

(keV) (keV) disintegrations correction

500 469.88 2352190 ± 96910 13.4%

450 422.59 947079 ± 85995 13.6%

400 375.19 470054 ± 33045 14.2%

325 304.31 100213 ± 14000 13.7%

300 280.70 62130 ± 9458 15.1%

275 257.09 45287 ± 8917 17.5%

Table 4.10: Final sum-corrected values of the total disintegrations for each of the six different bom-

barding energies.

flat distribution of the S-factor for the Ex = 2101, 3358, 4652, 4753 and 4860 keV primary transitions.

The primary branching ratios were recalculated assuming these transitions to be negligible and the

total number of disintegrations of 18F were within the uncertainties of the original calculation. These

two calculated values for the total number of disintegrations were averaged for the final result. The

Elab
p = 275 keV data were tested in the same way for the effects of removing the same five unseen

transitions and the results, which were within uncertainties, were then averaged. For this reason, the

inability to adjust the primary branching ratios of the 275 keV data is not of major concern. The final

values for the summing corrected total number of disintegrations of 18F measured at each of the six

bombarding energies are presented in Tab. 4.10.

The total number of 18F disintegrations is a weighted average of the total value computed for each

measured transition. The final average is in excellent agreement with the value calculated from the

Ex = 937 keV to ground state transition (937 → 0) alone. The uncertainties in the total number of

disintegrations were adopted from the relative uncertainty of the 937 → 0 transition, since this line has

the best statistics and was always in agreement with the average. The effects of coincidence summing

corrections are also presented in Tab. 4.10. These are illustrated by the 937 → 0 transition. This

line should have the largest correction and is therefore a good measure of the effects of coincidence

summing on the measured data. These corrections ranged from ≈ 13% to ≈ 17%.
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Elab
p Ecm

eff σtotal(E
cm
eff ) Stotal(E

cm
eff ) S557+677(E

cm
eff ) SDC(Ecm

eff )

(keV) (keV)
(

×10−9b
)

(keV b) (keV b) (keV b)

500 469.88 488 ± 49 17.89 ± 1.80 14.60 ± 3.07 3.29 ± 3.56

450 422.59 178 ± 23 10.80 ± 1.40 6.44 ± 1.31 4.36 ± 1.92

400 375.19 72.7 ± 8.4 8.13 ± 0.94 3.67 ± 0.73 4.47 ± 1.19

325 304.31 18.3 ± 3.1 6.69 ± 1.13 1.99 ± 0.38 4.71 ± 1.19

300 280.70 10.8 ± 1.9 6.46 ± 1.16 1.68 ± 0.32 4.78 ± 1.21

275 257.09 6.6 ± 1.5 6.96 ± 1.53 1.45 ± 0.28 5.52 ± 1.56

Table 4.11: Final measured total cross sections and associated total S-factors. Calculated resonance

tail contributions for Ecm
r = 557 and 677 keV resonances are also included to allow for the subtraction

of the resonance contribution from the total S-factors. This gives the measured direct capture S-

factors, SDC(Ecm
eff ).

4.3.5 Coincidence Summing Corrected Direct Capture S-factor

Application of summing corrections to the total number of 18F disintegrations allowed for calcula-

tion of the measured total cross section for 17O(p,γ)18F. This is presented in Tab. 4.11 along with the

total S-factor. The contribution to the total S-factor coming from the tails of the Ecm
r = 557 and 677

keV resonances, S557+677(E
cm
eff ), is also included. Calculating the resonance tail contribution only

required the experimental resonance strengths and widths for the two resonances. The uncertainty in

S557+677(E
cm
eff ) was found by varying the resonance width over the corresponding uncertainty. This

calculation yielded the same result as interpolation of the resonance tail S-factor curve from Fig. 4.1.

The resonance tail contribution was then subtracted incoherently from the total S-factor contribution

to yield the direct capture contribution, since any interference between the major direct capture tran-

sitions and the resonance contribution is proportional to P2 (cosθ) and is therefore negligible at the

experimental detection angle of 55◦. The results are provided in Tab. 4.11.

Figure 4.14 shows the newly measured total S-factor for 17O(p,γ)18F as red points. These data

are shown in comparison with the previous results of Rolfs [6] and Chafa et al. [21] (see Fig. 4.1).

A linear S-factor scale is chosen to better compare the current data with the previous descriptions.

The measured total S-factor points are in agreement with the predictions of Fox et al. [7] which are

represented by the solid black line. This supports the claim made in Ref. [7] that the resonance tail

contributions need to be taken into account when considering the measured total S-factor data. It is

not correct to assume that the direct capture contribution dominates the total S-factor at every energy
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Figure 4.14: Total measured S-factor (red points) from present work. Otherwise the plot is identical

to Fig. 4.1 except for the linear S-factor scale.

measured. This measurement also provides an experimental test of the method of estimating direct

capture cross sections using measured spectroscopic factors (see Eq. 1.31). This method has been

used extensively in the field of nuclear astrophysics, yet previous experimental investigations of its

validity are rare.

The measured total S-factor is displayed in Fig. 4.15 as red points. The black dashed line repre-

sents the resonance tail contribution from the Ecm
r = 557 and 677 keV resonances. Subtraction of the

resonant contribution from the total S-factor yielded the direct capture S-factor shown as green points.

The direct capture S-factor was assumed to be constant, since the calculated curve presented in Fox et

al. [7] is nearly constant over the energy range explored in this measurement. The new direct capture

S-factor curve was then chosen to be an average of the extracted direct capture S-factor points. The un-
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certainty in each data point has contributions from three sources. The first is a statistical contribution

resulting from counting statistics and summing corrections. The second is a systematic uncertainty

resulting from stopping powers, detection efficiencies and target thickness, which amounted to ≈ 9%

of the measured S-factor. The third is the uncertainty in the resonance tail contributions. The relative

magnitudes of these uncertainties can be found in Tab. 4.11. The average of the five direct capture

points was weighted by the statistical uncertainty on each point. The uncertainty on the weighted

average was then added in quadrature with the average systematic uncertainty of the five points and

the average resonance tail contribution of the five points. This resulted in a final constant value for the

direct capture S-factor at low energies of:

SDC(Ecm
eff ) = 4.6 ± 1.1 (keV b) for Ecm

eff < 450 keV. (4.11)

This corresponds to a 23% uncertainty on the new direct capture S-factor contribution, which is a

factor of 2 smaller than that of Ref. [7]. This is shown as the purple band in Fig. 4.15 and is in

agreement with the prediction of Fox et al. [7]. The new direct capture S-factor contribution is well

below the S-factor curve from Ref. [6] and at the center of the classical nova Gamow peak range

(≈180 keV) they disagree by a factor of ≈ 2. The measured point at Ecm
r = 183 keV from Ref. [21] is

not useful for comparison purposes because of the large uncertainty associated with this point. New

thermonuclear reaction rates were calculated using the direct capture S-factor contribution discussed

herein and are presented in Chap. 5.

The work presented in this chapter has been submitted for publication in The Physical Review C.
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Figure 4.15: Total measured S-factor (red points) from present work. The Ecm
r = 557 and 677 keV

resonance tail contributions (dashed curve) have been subtracted, leaving the measured direct capture

S-factor (green points). The weighted average of these green points give a flat direct capture S-factor

curve (purple band) with 23% associated uncertainty. The new total S-factor curve (solid line) is the

sum of the resonance and direct capture contributions.
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5 Reaction Rate Calculations

The reaction rates of the competing 17O(p,α)14N and 17O(p,γ)18F reactions are of interest to

classical nova simulations and other environments where the CNO cycles are in operation. In this

chapter the new Monte Carlo method for calculating reaction rates discussed in Sec. 1.5 and the new

method of matching experimental rates to statistical model calculations that was presented in Chap.

2 will be combined to calculate new thermonuclear reaction rates for 17O(p,α)14N and 17O(p,γ)18F

using the code RatesMC [8].

5.1 The 17O(p,α)14N Reaction Rate

The total reaction rate of 17O(p,α)14N consists entirely of resonant contributions. The rate will

be made up of contributions from several types of resonances, including subthreshold resonances,

low lying resonances, interfering resonances, and both narrow and broad resonances. Each type of

resonance will be explored individually in this section, and the specific reaction rate contributions will

then be combined to determine the total reaction rate of 17O(p,α)14N.

5.1.1 Narrow Resonance Contributions to the 17O(p,α)14N Reaction Rate

The narrow resonance contribution to the reaction rate is given by Eq. 1.20. For the 17O(p,α)14N

reaction there are unresolved discrepancies in the literature values of the narrow resonance strengths.

Table 5.1 displays the literature values for the narrow resonances in 17O(p,α)14N. The column labeled

“Current” is our best resonance strength that has been derived from the available literature. The

NACRE [14] strengths represent a weighted average of the literature values for each of the resonances,

but there are some problems with the interpretation of these data.

The strength for the Ecm
r = 530 keV resonance is listed in Ref. [34] as an upper limit. The accepted



NACRE [14] strength is taken to be 10% of this value. Though it is the standard practice, 10% is an

arbitrary choice. It is not statistically valid to treat this resonance strength as an arbitrary value with

a large uncertainty. This must be handled much more carefully by consideration of the partial widths.

This procedure is discussed in App. A.1.

The issue of the two Jπ = 3− states at Ecm
r = 633.9 keV and Ecm

r = 635.5 keV is interesting. It

seems to be the case that Brown [35] lists a value that includes both resonances, while Kieser [36]

was able to resolve these two states and has listed them separately. The strength quoted by NACRE

[14] for the Ecm
r = 633.9 keV state is an average of the two strengths listed by Refs. [35, 36]. This is

incorrect and should be handled in one of two ways. Either the two states should be separated and the

strengths from Ref. [36] should be used for each resonance, or the strengths associated with these two

states should be summed and then averaged with the strength listed in Ref. [35]. The second approach

was adopted here. The resonance energy was chosen as Ecm
r = 633.9 keV to coincide with the energy

of the lower of the two resonances. This choice was made for consistency with the listings in Refs.

[14, 35].

The final discrepancy in the literature involves the two states listed at Ecm
r = 1040.5 keV and Ecm

r

= 1170.5 keV. NACRE [14] has attributed a strength of ωγpα = 150 ± 6 eV to the Ecm
r = 1040.5 keV

state from Brown [35]. However, it is clear in Ref. [35] that this resonance strength is listed for the

Ecm
r = 1170.5 keV resonance. Rolfs [34] also quoted a strength of ωγpα = (150 ± 6) eV from Brown

[35] for the Ecm
r = 1170.5 keV resonance. This strength has been incorrectly assigned to the Ecm

r =

1040.5 keV resonance by NACRE [14]. The NACRE value of ωγpα = (109 ± 15) eV from Kieser

[36] does not come from the same table in Ref. [36] as the other values listed in the NACRE table

for this reference. Reference [36] does, however, include a list of partial widths for the 17O(p,α)14N

reaction, which includes this resonance. If the strength for this resonance is calculated using these

partial widths, a value of ωγpα = (111 ± 17) eV is obtained.

Owing to the discrepancies explained above, the calculation of the total reaction rate of 17O(p,α)14N

will not use the directly measured resonance strengths. Instead, the rate will be calculated by integra-

tion over the estimated cross section of these resonances. Although the energy dependence of these

resonances is relatively unimportant and integration is a much more tedious procedure, the strengths

listed above are not completely understood. Therefore, the partial widths, listed in Ref. [36] for each
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ωγpα (eV)

ECM
R (keV) Jπ Brown Kieser Rolfs NACRE Current

489.9 ± 1.2 4− 50.0 ± 5.0 47.9 ± 5.4 - 49.0 ± 3.7 49.0 ± 3.7

530.0 ± 0.3 0+ - - < 0.17 .017 ± .15
.017 < 0.17

556.7 ± 1.0 3+ - - 2.25 ± 0.42 2.25 ± 0.42 2.25 ± 0.42

633.9 ± 0.9 3− 43 ± 4 29.8 ± 3.5 - 35.5 ± 2.6 46.1 ± 2.9

635.5 ± 3 3− - 19.7 ± 2.3 - 19.7 ± 2.3 -

655.5 ± 2.5 1+ - 5.0 ± 0.6 - 5.0 ± 0.6 5.0 ± 0.6

676.7 ± 1.0 2+ - - 5.8 ± 1.2 5.8 ± 1.2 -

704.0 ± 0.9 3+ 100 ± 10 97.0 ± 10.4 - 98.6 ± 7.2 98.6 ± 7.2

779.0 ± 1.8 2+ 23 ± 2 24.3 ± 2.7 - 23.4 ± 1.6 23.5 ± 1.6

878.4 ± 1.6 3+ 39 ± 4 37.6 ± 4.2 - 38.4 ± 2.9 38.3 ± 2.9

960.5 ± 1.6 5+ - 1.04 ± 0.22 - 1.04 ± 0.22 1.04 ± 0.22

1037.2 ± 0.9 2− 36 ± 4 38.9 ± 4.8 - 37.2 ± 3.1 37.2 ± 3.1

1040.5 ± 4 1− - - - 150 ± 16 -

1170.5 ± 1.5 4+ 150 ± 16 - - 109 ± 15 150 ± 16

Table 5.1: Narrow resonances used in the calculation of the total reaction rate for 17O(p,α)14N. Res-

onance energies are taken from Ref. [33] and strengths are taken from Refs. [14, 34, 35, 36].

Ecm
R (keV) Jπ

Γγ (eV) Γp (eV) Γα (eV)

65.1 ± 0.5 1− (4.4 ± 0.2)×10−1 (18.8 ± 3.2)×10−9 130 ± 5

183.35 ± 0.25 2− (9.6 ± 3.6)×10−3 (3.99 ± .24)×10−3 13.3 ± 5.5

Table 5.2: Partial widths for the two lowest lying resonances in 17O(p,α)14N. Resonance energies are

taken from Ref. [19] for Ecm
r = 65.1 keV and averaged from Refs.[7, 21, 25] for ECM

R = 183.35 keV.

of the resonances, will be used in order to construct the Breit-Wigner cross sections. The rate contri-

bution can be calculated using Eq. 1.24. This will be discussed in more detail later in this chapter.

5.1.2 Low-Lying and Subthreshold Resonances

Recall from Sec. 1.3.3 that it is often necessary to take the energy dependence of a resonance

into account when calculating the reaction rate. This will require integration over the resonance cross

section. The two lowest lying resonances in 17O(p,α)14N at Ecm
R = 65.1 keV and Ecm

R = 183.4 keV

must be integrated in order to accurately determine their contributions to the total reaction rate at the

lower temperatures of interest. Table 5.2 gives the values of the resonance energies and partial widths

for both of these resonances. The resonance energy of Ecm
R = 183.35 keV is an average of the three

most recent literature values [7, 21, 25].
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The values of the partial widths listed in Tab. 5.2 can be easily calculated from available experi-

mentally measured values for the strengths and total widths. The following values are known for the

ECM
r = 65.1 keV resonance:

ωγ65
αγ = 0.44 ± 0.02 eV

ωγ65
pα = (4.7 ± 0.8) × 10−9 eV

Γ
65
α = 130 ± 5 eV

ω65
αγ =

2J + 1

(2j14N + 1)(2jα + 1)
= 1

ω65
pα =

2J + 1

(2j17O + 1)(2jp + 1)
=

1

4

The value for ωγ65
αγ is an average of the values from Refs. [34, 37, 38, 39]; ωγ65

pα is a correction to the

value from Ref. [40] and Γ
65
α is taken from Ref. [41].

One can solve for the remaining two partial widths in terms of the above known quantities:

Γ
65
γ =

ωγαγ

ωαγ(Γα − ωγαγ)
(5.1)

Γ
65
p =

ωγpα(Γα + Γγ)

ωpαΓα
(5.2)

This gives values of Γ
65
γ = (0.44 ± 0.02) eV and Γ

65
p = (18.8 ± 3.2) × 10−9 eV.

The strengths for the 183 keV resonance are:

ωγ183
αγ = 0.016 ± 0.006 eV

ωγ183
pγ = (1.2 ± 0.2) × 10−9 eV

ωγ183
pα = (1.66 ± 0.17) × 10−3 eV

The value for ωγ183
pγ is taken from Ref.[7]; ωγ183

pα is from the current work and ωγ183
αγ is from Ref.

[34].

Again, using the definitions of the corresponding resonance strengths and solving for the partial
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Ecm
R (keV) C2S θ2

sp Γγ (eV) Γα (eV)

−3.12 ± 0.57 0.054 ± 0.018 0.485 ± 0.051 42.8 ± 1.6

−1.64 ± 0.57 ≤ 0.0082 0.894 ± 0.074 32.0 ± 2.1

Table 5.3: Input values for subthreshold resonances in 17O(p,α)14N. These will be numerically inte-

grated to find the reaction rate contribution of each resonance. [5, 42]

widths, gives:

Γ
183
α =

3

5

[

ωγαγωγpα + ωγpγωγαγ + 4ωγpγωγpα

ωγαγ

]

(5.3)

Γ
183
p =

12

5

[

ωγαγωγpα + ωγpγωγαγ + 4ωγpγωγpα

ωγpα

]

(5.4)

Γ
183
γ =

3

5

[

ωγαγωγpα + ωγpγωγαγ + 4ωγpγωγpα

ωγpγ

]

(5.5)

Inserting the measured resonance strengths into the above equations gives for the partial widths: Γ
183
α

= (13.3 ± 5.6) eV , Γ
183
p = (0.00399 ± 0.00024) eV and Γ

183
γ = (0.0096 ± 0.0036) eV.

For the case of 17O(p,α)14N, there are two subthreshold resonances which may contribute signif-

icantly to the total reaction rate at low temperatures. These have resonance energies of Ecm
r = −3.12

keV and Ecm
r = −1.64 keV. The proton width for a subthreshold resonance is described by Eq. 1.25.

Table 5.3 includes all of the values necessary to calculate the partial widths for these two subthreshold

resonances. Note that the values given for the Ecm
R = −1.64 keV resonance include an upper limit

and must be treated carefully. Recall from Sec. 1.5 that the Monte Carlo rate calculation requires a

statistically valid distribution for each resonance parameter. The procedure for describing the single

particle reduced width for the case of an upper limit value is described in App. A.1. This resonance

will have a large affect on the reaction rate at very low temperatures.

5.1.3 Higher Lying Resonances

The contribution to the reaction rate from resonances with Ecm
r ≥ 489.9 keV is found using Eq.

1.24. The partial widths for each of these resonances are given in Tab. 5.4. This list of higher lying

resonances includes the narrow resonances discussed in Sec. 5.1.1 that do not have reliable literature

resonance strength values. The partial widths were taken from Ref. [36], and were calculated using an
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ECM
R (keV) Jπ

Γp (eV) Γα (eV)

489.9 ± 1.2 4− 138 ± 26 106 ± 17

501.5 ± 3.0 (1+) 0.20 ± 0.02 33.6 ± 3.3

556.7 ± 1.0 3+ 14000 ± 500 5.0 ± 0.6

633.9 ± 0.9 3− 58.2 ± 7.0 133.0 ± 23.8

635.5 ± 3.0 3− 40.8 ± 3.7 137.0 ± 34.7

655.5 ± 2.5 1+ 27 ± 3 575 ± 120

676.7 ± 1.0 2+ 10000 ± 500 27 ± 3

704.0 ± 0.9 3+ 525 ± 117 426 ± 82

779.0 ± 1.8 2+ 109 ± 11 286 ± 87

878.4 ± 1.6 3+ 277 ± 91 123 ± 25

960.5 ± 1.6 5+ 1.2 ± 0.1 560 ± 132

1026.5 ± 10.0 1− 2920 ± 313 77090 ± 2000

1037.2 ± 0.9 2− 368 ± 61 231 ± 40

1170.5 ± 1.5 4+ 9000 ± 1000 150 ± 24

1202.5 ± 5.0 2− 16570 ± 1551 71500 ± 2000

1204.5 ± 10.0 (2+) 2750 ± 450 210 ± 67

1250.5 ± 10.0 (3−) 5000 ± 1000 30 ± 7

1594.5 ± 2.1 (4+) 29400 ± 1000 500 ± 58

1640.5 ± 2.1 (1+) 5000 ± 1000 55000 ± 5000

1684.5 ± 2.1 3− 15820 ± 1427 44180 ± 15000

Table 5.4: Input parameters for the resonances to be integrated over for calculation of the total reaction

rate in 17O(p,α)14N. Resonance energies taken from Ref. [33] and the particle partial widths are taken

from Ref. [36].

R-matrix fit. There are two tables in Ref. [36] which list partial widths for resonances of Ecm
r ≥ 489.9

keV. The values from Tab. 3 of Ref. [36] were chosen because they provide better agreement with the

resonance strength values presented in Tab. 5.1. Equation 1.24 takes into consideration the effects of

the tails of wider resonances which cannot be estimated using the narrow resonance approximation.

Also, interference between resonances, which will be discussed in Sec. 5.1.4, requires knowledge of

the full energy dependence of the interfering resonances.

Figure 5.1 shows the relative contributions to the total reaction rate for each of the resonance

categories. The individual and total contributions were calculated using the Monte-Carlo sampling

code RatesMC [8] which is described in Sec. 1.5. The two subthreshold resonances and the two low

lying resonances are all considered individually, while the other 20 higher lying resonances listed in

Tab. 5.4 are combined. The contributions from the Ecm
r = 65.1 and 183 keV resonances dominate the

total reaction rate in the temperature range 0.02 < T9 <0.3. The uncertainty in the total reaction rate
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Figure 5.1: Fractional contributions to the reaction rate of 17O(p,α)14N, including the contributions of

the 20 resonances from Tab. 5.4, the two low lying resonances and the two subthreshold resonances

listed in Tabs. 5.2 and 5.3. Calculations were performed with RatesMC [8].

will be dominated by the individual contributions from these two resonances at these temperatures.

In the range T9 > 0.3, the total rate is entirely determined by the 20 higher lying resonances. The

temperature is now high enough that the low lying and subthreshold resonances no longer contribute

noticeably.

The lowest temperatures shown in Fig. 5.1, T9 < 0.02, display a very interesting feature. Not only

do the subthreshold resonances become important, the contributions from the individual resonances

are all so small that the tails of the higher lying resonances also contribute significantly to the total

reaction rate. The contribution of these tails would not be seen if the narrow resonant reaction rate

formalism were used to calculate the rates. This is a distinct advantage of integrating over the entire

Breit-Wigner energy dependence of the resonances.

5.1.4 Interference

Interference between levels of the same Jπ is described in Ref. [43] by the simple equation:
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Figure 5.2: Interference between two Jπ = 1+ resonances in 17O(p,α)14N at Ecm
r = -3.12 keV and 655

keV.

Stotal(E) = S1(E) + S2(E) ± 2
√

S1(E)S2(E)cos(δ1 − δ2), (5.6)

which comes from squaring the sum of reaction amplitudes with arbitrary phases. The phase shifts of

the two interfering resonances, δi, are given in Ref. [43] by:

δi = tan−1

[

Γi(E)

2(E − ERi
)

]

, (5.7)

with Eri
, the resonance energies of the interfering resonances. The interference between two reso-

nances may be either constructive or destructive and an experimental measurement is necessary to

resolve the ambiguity. If the interference is constructive on one side of a resonance it will be destruc-

tive on the opposite side of that resonance, since the phase shift will flip signs at E = Eri
.

The effects of interference on the uncertainties of the total reaction rate will be larger if the sign

of the interference term is not known, since this will result in an uncertain shape for the interference

S-factor. The effects of interference between five pairs of resonances on the S-factor have been plotted
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Figure 5.3: Interference between two Jπ = 1− resonances in 17O(p,α)14N at Ecm
r = -1.64 keV and 65

keV. The value of the spectroscopic factor for the subthreshold resonance is an upper limit. These

curves were calculated using the upper limit value.

0 0.5 1 1.5 2

0.0001

0.01

1

100

S
1
 + S

2

(+) Interference

(-) Interference

E
cm

 (MeV)

S
-F

ac
to

r 
(M

eV
 b

)

Figure 5.4: Interference between two Jπ = 2+ resonances in 17O(p,α)14N at Ecm
r = 677 keV and 779

keV.
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Figure 5.5: Interference between two Jπ = 2− resonances in 17O(p,α)14N at Ecm
r = 183 keV and 1037

keV.
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Figure 5.6: Interference between two Jπ = 2− resonances in 17O(p,α)14N at Ecm
r = 183 keV and 1202

keV.
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in Figs. 5.2 through 5.6. There are three curves in each plot, corresponding to the S-factors for two

resonances summed incoherently and the results using either the (+) or (-) interference sign in Eq. 5.6.

It is important to determine which pairs of interfering resonances will contribute significantly to

the total reaction rate uncertainties. If a specific pair of resonances contributes an uncertainty which

is several orders of magnitude less than the uncertainty on the total reaction rate, the interference

between these resonances may be ignored and the individual contributions to the reaction rate for

each of them simply summed incoherently. In order to determine the significance of the uncertainty

from interference between a pair of resonances, the contribution to the total reaction rate of the two

interfering resonances, including uncertainties, is calculated separately. This is then compared to

the analytical reaction rate calculated assuming there are no interfering resonances. The analytical

reaction rate is a simple calculation of the total reaction rate that uses the literature value for each

resonance parameter without taking uncertainties or interference into account. The final recommended

rate will be calculated rigorously using RatesMC [8], but the analytical rate was used for studying

the interferences since it is very time consuming to use a Monte Carlo approach for this purpose.

Figure 5.7 (bottom panel) shows a comparison of the 17O(p,α)14N analytical reaction rate and

the reaction rate calculated assuming that only the Jπ = 1− resonances at Ecm
r = -1.64 and 65.1 keV

interfere. All rates and uncertainties were divided by the analytical rate for comparison purposes.

A value of C2Sθ2
sp = 0.0041 was chosen for the product of the spectroscopic factor and the proton

reduced width for the Ecm
r = -1.64 kev resonance. This is half of the upper limit value from Tab.

5.3. The interference between these two states may be an even more significant source of error in the

calculation of the total reaction rate if the value is actually larger and a proper statistical distribution

for this parameter will be used for the Monte Carlo rate calculation (see App. A.1).

The interference contributions shown in Figs. 5.7 and 5.8 indicate that the effects of the Jπ = 1−

resonances will dominate the reaction rate uncertainties caused by interference. This is also shown

quantitatively in Tab. 5.5, where the uncertainties in the final reaction rate caused by specific interfer-

ing resonance pairs are compared as a percentage of the total analytical reaction rate at a temperature

of 0.01 GK. This temperature has been chosen as a reference temperature for comparison purposes

only. Of the remaining 4 pairs of interfering resonances, the Jπ = 2− resonances at Ecm
r = 183 and

1203 keV contribute the most uncertainty to the total reaction rate at this temperature. Therefore, for
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Figure 5.7: Tests of the significance of interference effects on the total reaction rate uncertainties from

individual pairs of resonances. The top panel shows the reaction rate uncertainty from the interference

between the Jπ = 1+ resonances at Ecm
r = -3.1 keV and 655 keV divided by the total analytical reaction

rate. The bottom panel shows the reaction rate uncertainty from the interference between the Jπ = 1−

resonances at Ecm
r = -1.6 keV and 65.1 keV divided by the total analytical reaction rate.
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Figure 5.8: Tests of the significance of interference effects on the total reaction rate uncertainties from

individual pairs of resonances. The top panel shows the reaction rate uncertainty from the interference

between the Jπ = 2+ resonances at Ecm
r = 677 keV and 779 keV divided by the total analytical reaction

rate. The bottom panel shows the reaction rate uncertainty from the interference between the Jπ = 2−

resonances at Ecm
r = 183 keV and 1203 keV divided by the total analytical reaction rate.

111



Ecm
R (keV) Jπ Deviation from analytical rate

-3.12 and 655 1+ 1.36%

-1.64 and 65.1 1− 50.1%

677 and 779 2+ 0.26%

183 and 1037 2− 0.044%

183 and 1202.5 2− 2.78%

Table 5.5: Effects of interference between pairs of resonances are compared to the total analytical

reaction rates. The temperature of T9 = 0.01 has been chosen as a reference for comparison between

pairs of resonances. The deviation from the analytical rate is the ratio of the uncertainty in the total

reaction rate from interference between the given pair of resonances to the total reaction rate calculated

analytically.

the final rate calculations, only the interference between these two pairs of resonances will be consid-

ered. All other interferences between resonances will be considered insignificant for the final reaction

rate of 17O(p,α)14N. The interference contributions are only significant below a temperature of T9 =

0.03.

5.1.5 Total Reaction Rate for 17O(p,α)14N

The calculation of the total reaction rate of 17O(p,α)14N includes a combination of all the contri-

butions discussed previously in this chapter. The total rate calculation is performed using RatesMC

(see Sec. 1.5). A Porter-Thomas distribution with a mean proton reduced width of ⟨θ2⟩ = 0.05 (see

appendix A.1) has been chosen to describe the the proton reduced width of the subthreshold resonance

at Ecm
r = -1.64 keV. This resonance was not accounted for in the rate calculation of Ref. [21]. Table

5.6 gives the calculated values for the total Monte Carlo reaction rate of 17O(p,α)14N. The recom-

mended rate is the median of the sampled rates. A number of 10,000 samples was chosen to ensure

good statistics. The lower and upper limits listed define a 68% coverage probability. Also included in

Tab. 5.6 are the lognormal parameters µ and σ for each temperature. These may be used to construct

an approximate log-normal distribution describing the output rate probability density. A random vari-

able that is made up of a sum of many contributing factors will be described by a Gaussian probability

density function. Since the reaction rate is made up of a product of contributing factors, however, it

should be described by a lognormal probability density function [8]. A histogram of the sample of

calculated rate values for 17O(p,α)14N at a temperature of T9 = 0.05 is displayed in Fig. 5.9. The
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T9 LL Recommended UL µ σ

0.010 5.04×10−25 5.89×10−25 6.98×10−25 -5.578×10+01 1.66×10−01

0.011 5.36×10−24 6.21×10−24 7.28×10−24 -5.343×10+01 1.57×10−01

0.012 4.38×10−23 5.02×10−23 5.85×10−23 -5.134×10+01 1.47×10−01

0.013 2.88×10−22 3.30×10−22 3.81×10−22 -4.946×10+01 1.42×10−01

0.014 1.60×10−21 1.82×10−21 2.08×10−21 -4.775×10+01 1.35×10−01

0.015 7.68×10−21 8.73×10−21 9.98×10−21 -4.618×10+01 1.32×10−01

0.016 3.34×10−20 3.78×10−20 4.31×10−20 -4.472×10+01 1.28×10−01

0.018 5.86×10−19 6.78×10−19 7.87×10−19 -4.183×10+01 1.48×10−01

0.020 1.28×10−17 1.57×10−17 1.91×10−17 -3.870×10+01 1.98×10−01

0.025 1.24×10−14 1.52×10−14 1.86×10−14 -3.182×10+01 2.00×10−01

0.030 1.44×10−12 1.73×10−12 2.08×10−12 -2.708×10+01 1.82×10−01

0.040 5.13×10−10 6.05×10−10 7.17×10−10 -2.123×10+01 1.69×10−01

0.050 1.61×10−08 1.89×10−08 2.22×10−08 -1.778×10+01 1.64×10−01

0.060 1.51×10−07 1.78×10−07 2.11×10−07 -1.554×10+01 1.67×10−01

0.070 7.27×10−07 8.59×10−07 1.02×10−06 -1.397×10+01 1.69×10−01

0.080 2.33×10−06 2.77×10−06 3.28×10−06 -1.280×10+01 1.72×10−01

0.090 6.04×10−06 7.11×10−06 8.35×10−06 -1.185×10+01 1.62×10−01

0.100 1.59×10−05 1.80×10−05 2.05×10−05 -1.092×10+01 1.27×10−01

0.110 4.87×10−05 5.28×10−05 5.75×10−05 -9.847×10+00 8.38×10−02

0.120 1.59×10−04 1.68×10−04 1.79×10−04 -8.689×10+00 6.10×10−02

0.130 4.83×10−04 5.12×10−04 5.42×10−04 -7.578×10+00 5.76×10−02

0.140 1.32×10−03 1.40×10−03 1.48×10−03 -6.574×10+00 5.76×10−02

0.150 3.19×10−03 3.38×10−03 3.58×10−03 -5.689×10+00 5.89×10−02

0.160 6.95×10−03 7.36×10−03 7.81×10−03 -4.911×10+00 5.91×10−02

0.180 2.52×10−02 2.68×10−02 2.84×10−02 -3.620×10+00 6.00×10−02

0.200 7.00×10−02 7.44×10−02 7.89×10−02 -2.599×10+00 6.01×10−02

0.250 4.29×10−01 4.54×10−01 4.81×10−01 -7.891×10−01 5.85×10−02

0.300 1.59×10+00 1.67×10+00 1.77×10+00 5.155×10−01 5.39×10−02

0.350 5.87×10+00 6.28×10+00 6.73×10+00 1.838×10+00 6.92×10−02

0.400 2.32×10+01 2.55×10+01 2.81×10+01 3.240×10+00 9.52×10−02

0.450 8.22×10+01 9.13×10+01 1.02×10+02 4.515×10+00 1.07×10−01

0.500 2.41×10+02 2.68×10+02 2.99×10+02 5.591×10+00 1.09×10−01

0.600 1.26×10+03 1.40×10+03 1.55×10+03 7.241×10+00 1.06×10−01

0.700 4.15×10+03 4.58×10+03 5.06×10+03 8.430×10+00 9.94×10−02

0.800 1.03×10+04 1.12×10+04 1.23×10+04 9.327×10+00 9.24×10−02

0.900 2.09×10+04 2.27×10+04 2.48×10+04 1.003×10+01 8.55×10−02

1.000 3.73×10+04 4.03×10+04 4.36×10+04 1.061×10+01 7.90×10−02

1.250 1.12×10+05 1.19×10+05 1.27×10+05 1.169×10+01 6.46×10−02

1.500 2.51×10+05 2.65×10+05 2.79×10+05 1.249×10+01 5.40×10−02

1.750 4.76×10+05 4.99×10+05 5.22×10+05 1.312×10+01 4.73×10−02

2.000 8.03×10+05 8.39×10+05 8.77×10+05 1.364×10+01 4.41×10−02

2.500 (1.71×10+06) (1.79×10+06) (1.87×10+06) (1.440×10+01) (4.39×10−02)

3.000 (3.05×10+06) (3.18×10+06) (3.33×10+06) (1.497×10+01) (4.39×10−02)

3.500 (4.86×10+06) (5.08×10+06) (5.31×10+06) (1.544×10+01) (4.39×10−02)

4.000 (7.15×10+06) (7.47×10+06) (7.80×10+06) (1.583×10+01) (4.39×10−02)

5.000 (1.30×10+07) (1.36×10+07) (1.42×10+07) (1.642×10+01) (4.39×10−02)

6.000 (2.03×10+07) (2.12×10+07) (2.21×10+07) (1.687×10+01) (4.39×10−02)

7.000 (2.86×10+07) (2.98×10+07) (3.12×10+07) (1.721×10+01) (4.39×10−02)

8.000 (3.76×10+07) (3.93×10+07) (4.11×10+07) (1.749×10+01) (4.39×10−02)

9.000 (4.71×10+07) (4.93×10+07) (5.15×10+07) (1.771×10+01) (4.39×10−02)

10.000 (5.91×10+07) (6.18×10+07) (6.45×10+07) (1.794×10+01) (4.39×10−02)

Table 5.6: Reaction rates for 17O(p,α)14N calculated using the Monte Carlo code, RatesMC [8].

The recommended rate is the median of the sampled distribution; µ and σ are the parameters of a

log-normal distribution approximating the sampled distribution. The rates were matched to Hauser-

Feshbach rates adopted from Ref. [12] at 2.115 GK (see Chap. 2 for matching procedure)
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Figure 5.9: Histogram of the distribution of reaction rates calculated using the Monte Carlo code,

RatesMC [8] for T9 = 0.05. The histogram is overlayed by a lognormal distribution with parameters

of µ = -1.78 and σ = 0.164 taken from Tab. 5.6

black curve represents a log-normal distribution with µ = -17.78 and σ = 0.164, as listed in Tab. 5.6.

The lognormal approximation is a very good description of the Monte Carlo distribution. Similar

results are found at all other temperatures.

Figure 5.10 displays a comparison between the rates calculated in the present work and those

presented in Ref. [21]. There are two interesting aspects. First, at low Temperatures (T9 < 0.02)

the new rates are much larger and have a much larger uncertainty than those presented in Ref. [21].

This results from including the subthreshold resonance at Ecm
r = -1.64 keV, which was disregarded

in Ref. [21]. Interference effects were also taken into account here and these were shown to be

important at temperatures below T9 = 0.03 (see Sec. 5.1.4). Both of these effects will contribute to

the discrepancies between these two sets of reaction rates. The second effect is that the rates diverge

at the highest temperatures shown (T9 > 1.0). This discrepancy is caused by the fact that the present

calculation includes all the levels listed in Tab. 5.4, while the rates from Ref. [21] include only those

resonances listed in Tab. 5.1. The resonances that are not included in Tab. 5.1 but are taken into
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Figure 5.10: Comparison of the total reaction rate of 17O(p,α)14N calculated in the present work,

compared to those presented in Reference [21]. All reaction rates and upper and lower limits were

normalized to the recommended rates from Ref. [21]

account in Tab. 5.4 are all located at higher excitation energies.

5.2 The 17O(p,γ)18F Reaction Rate

New reaction rates for 17O(p,γ)18F can be calculated using the newly measured direct capture

S-factor presented in Chap. 4. These reaction rates will be calculated following the same procedure

used for calculating the rates of 17O(p,α)14N presented in Sec. 5.1.5. First, accurate values for all of

the known resonance parameters must be compiled from the literature and used to make an input file

for the Monte Carlo reaction rate code. These will be combined with the new direct capture S-factor

and new reaction rates will be presented.

5.2.1 Narrow Resonances in 17O(p,γ)18F

There are several narrow resonances which contribute to the reaction rate of 17O(p,γ)18F, but there

are problems with the values of the resonance strengths quoted in the literature. As discussed in Ref.
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Resonances in 17O(p,α)14N
ωγpγ (eV)

ECM
R (keV) Rolfs renormalized Sens

489.9±1.2 0.013±0.0016 0.0068±0.0013

530.0±0.6 0.110±0.025 0.079±0.015

556.7±1.0 0.335±0.075 0.235±0.044

633.9±0.9 0.160±0.026 0.14±0.20

676.7±1.0 0.455±0.094 0.287±0.053

704.0±0.9 0.0320±0.0071 0.0252±0.0049

779.0±1.8 0.0300±0.0078 0.0216±0.044

878.4±1.6 0.0180±0.0070 0.0127±0.0041

1037.2±0.9 0.215±0.051 0.165±0.033

1170.5±1.5 0.140±0.028 0.071±0.013

1196.6±1.6 0.0270±0.0092 0.0205±0.0047

1270.9±1.8 0.0500±0.0186 0.0193±0.0052

Table 5.7: Literature values for narrow resonances used in 17O(p,γ)18F. Resonance energies are taken

from Ref. [33] and strengths are from Ref. [34, 44].

[7], the ωγpγ values quoted in Ref. [6] are normalized to an incorrect strength of the Ecm
r = 633

keV in 27Al(p,γ)28Si. The strengths were normalized to a value of ωγpγ = 0.44 ± 0.07 eV, while the

correct value taken from Ref. [13] is ωγpγ = 0.264 ± 0.016 eV. The data from Ref. [6] need to be

renormalized to the correct strength. These renormalized values are listed in Tab. 5.7. Also included

in Tab. 5.7 are the resonance strengths measured by Sens et al. [44]. For each of the resonances listed,

the strengths are systematically lower in Ref. [44] than the renormalized values of Ref. [34]. Fox et

al. [7] used an average of the two strengths and Chafa et al. [21] used a weighted average for the final

resonance strengths. The experiment presented in Chap. 4 included measured resonance strengths for

both the Ecm
r = 144 keV in 18O(p,γ)19F and the Ecm

r = 490 keV resonance in 17O(p,γ)18F. The result

for the Ecm
r = 144 keV resonance strength from the present work is in agreement with the literature

[1]. The renormalized strength of Rolfs et al. [34] for the Ecm
r = 490 keV is in agreement with the

present measurement of this resonance (see Sec. 4.2.3). For these reasons, the resonance strengths of

Ref. [44] will be disregarded for the purposes of calculating the reaction rate of 17O(p,γ)18F.
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5.2.2 Broad and Interfering Resonances

Each of the resonances included in Tab. 5.7 will be treated as narrow except the Ecm
r = 556.7 keV,

676.7 keV and 1037.2 keV resonances. The width of these resonances requires the inclusion of the

energy dependence of their cross sections in the integration of the reaction rate. The particle partial

widths Γp and Γα for each of these states can be found in Tab. 5.2 and the γ-ray partial widths, Γγ ,

can be easily derived using their respective resonance strengths listed in Tab. 5.7. This results in final

values of Γγ = 0.57±0.13 eV, 1.09±0.23 eV and 0.84±0.20 eV for the above resonances, respectively.

Interference effects are considered for three pairs of resonances: the 1− resonances at Ecm
r = -1.6

and 65 keV, the 2− resonances at Ecm
r = 183 and 1037 keV, and the 2+ resonances at Ecm

r = 677 and

779 keV. The partial widths for the two subthreshold resonances and the Ecm
r = 65 keV resonance can

be found in Sec. 5.1.2. Recall that the proton partial width, Γp, for the subthreshold resonance at Ecm
r

= -65 keV is an upper limit value and its treatment is specifically addressed in Sec. 5.1.2.

5.2.3 Total Reaction Rate for 17O(p,γ)18F

Combining the resonance strengths for the narrow resonances in Tab. 5.7 and the partial widths

listed above, the total reaction rates for 17O(p,γ)18F can now be calculated using the Monte Carlo

procedure. The results are presented in Tab. 5.8.

The new rates for the 17O(p,γ)18F reaction are compared to the rates calculated by Chafa et al.

[21] in the top panel of Fig. 5.11. Notice that for the peak temperature range important to classical

novae (T = 0.1 -0.4 GK) the reaction rate has a significantly smaller uncertainty and is lower than that

of Ref. [21]. This is a result of using a smaller direct capture contribution from the present work that

has a factor of two smaller uncertainty than that of Chafa et al. [21]. This is discussed in detail in Sec.

4.3.5. At low temperatures the present rate is consistent with the recommended rate of Ref. [21]. The

uncertainty on the total reaction rate, however, is significantly smaller. This is again a result of the

dominance of the direct capture contribution below T = 0.03 GK (see Fig. 9 from Ref. [7]). At high

temperatures (T > 0.4 GK) the rate is dominated by the contribution of resonances with Ecm
r ≥ 489

keV. The present rates are higher than those of Ref. [21] because the renormalized strengths of Rolfs

et al. [34] were used here. The bottom panel of Fig. 5.11 shows a comparison of the current reaction
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T9 LL Recommended UL µ σ

0.010 2.95×10−25 3.58×10−25 4.38×10−25 -5.629×10+01 2.02×10−01

0.011 3.10×10−24 3.78×10−24 4.64×10−24 -5.393×10+01 2.01×10−01

0.012 2.51×10−23 3.09×10−23 3.81×10−23 -5.183×10+01 2.08×10−01

0.013 1.64×10−22 1.99×10−22 2.45×10−22 -4.996×10+01 2.03×10−01

0.014 8.83×10−22 1.08×10−21 1.33×10−21 -4.827×10+01 2.05×10−01

0.015 4.08×10−21 4.98×10−21 6.14×10−21 -4.675×10+01 2.07×10−01

0.016 1.65×10−20 2.02×10−20 2.50×10−20 -4.534×10+01 2.05×10−01

0.018 1.98×10−19 2.42×10−19 2.96×10−19 -4.287×10+01 2.03×10−01

0.020 1.69×10−18 2.06×10−18 2.51×10−18 -4.072×10+01 1.99×10−01

0.025 1.67×10−16 1.97×10−16 2.32×10−16 -3.616×10+01 1.62×10−01

0.030 8.35×10−15 9.69×10−15 1.12×10−14 -3.227×10+01 1.46×10−01

0.040 2.13×10−12 2.47×10−12 2.88×10−12 -2.672×10+01 1.53×10−01

0.050 6.56×10−11 7.62×10−11 8.88×10−11 -2.330×10+01 1.52×10−01

0.060 6.61×10−10 7.66×10−10 8.88×10−10 -2.099×10+01 1.48×10−01

0.070 3.61×10−09 4.13×10−09 4.76×10−09 -1.930×10+01 1.40×10−01

0.080 1.38×10−08 1.58×10−08 1.79×10−08 -1.797×10+01 1.32×10−01

0.090 4.31×10−08 4.93×10−08 5.66×10−08 -1.682×10+01 1.37×10−01

0.100 1.21×10−07 1.39×10−07 1.61×10−07 -1.579×10+01 1.44×10−01

0.110 3.13×10−07 3.64×10−07 4.25×10−07 -1.482×10+01 1.54×10−01

0.120 7.69×10−07 9.02×10−07 1.07×10−06 -1.391×10+01 1.64×10−01

0.130 1.78×10−06 2.11×10−06 2.52×10−06 -1.306×10+01 1.75×10−01

0.140 3.87×10−06 4.65×10−06 5.65×10−06 -1.227×10+01 1.92×10−01

0.150 7.96×10−06 9.65×10−06 1.19×10−05 -1.154×10+01 2.03×10−01

0.160 1.53×10−05 1.87×10−05 2.33×10−05 -1.088×10+01 2.16×10−01

0.180 4.85×10−05 5.99×10−05 7.57×10−05 -9.710×10+00 2.30×10−01

0.200 1.29×10−04 1.60×10−04 2.02×10−04 -8.729×10+00 2.32×10−01

0.250 8.64×10−04 1.05×10−03 1.32×10−03 -6.841×10+00 2.21×10−01

0.300 3.89×10−03 4.61×10−03 5.57×10−03 -5.371×10+00 1.84×10−01

0.350 1.64×10−02 1.87×10−02 2.15×10−02 -3.974×10+00 1.37×10−01

0.400 6.87×10−02 7.71×10−02 8.69×10−02 -2.561×10+00 1.18×10−01

0.450 2.53×10−01 2.85×10−01 3.22×10−01 -1.253×10+00 1.21×10−01

0.500 7.85×10−01 8.86×10−01 1.01×10+00 -1.186×10−01 1.26×10−01

0.600 4.59×10+00 5.20×10+00 5.94×10+00 1.651×10+00 1.29×10−01

0.700 1.65×10+01 1.87×10+01 2.13×10+01 2.932×10+00 1.28×10−01

0.800 4.31×10+01 4.88×10+01 5.55×10+01 3.889×10+00 1.26×10−01

0.900 9.03×10+01 1.02×10+02 1.15×10+02 4.626×10+00 1.22×10−01

1.000 1.62×10+02 1.82×10+02 2.06×10+02 5.206×10+00 1.22×10−01

1.250 4.49×10+02 5.02×10+02 5.66×10+02 6.222×10+00 1.15×10−01

1.500 8.59×10+02 9.59×10+02 1.08×10+03 6.868×10+00 1.13×10−01

1.750 1.33×10+03 1.48×10+03 1.66×10+03 7.305×10+00 1.10×10−01

2.000 1.82×10+03 2.02×10+03 2.25×10+03 7.613×10+00 1.07×10−01

2.500 2.69×10+03 2.99×10+03 3.32×10+03 8.004×10+00 1.05×10−01

3.000 3.38×10+03 3.74×10+03 4.13×10+03 8.227×10+00 1.02×10−01

3.500 3.85×10+03 4.25×10+03 4.71×10+03 8.356×10+00 9.98×10−02

4.000 4.14×10+03 4.56×10+03 5.03×10+03 8.425×10+00 9.86×10−02

5.000 4.33×10+03 4.78×10+03 5.26×10+03 8.471×10+00 9.55×10−02

6.000 4.24×10+03 4.66×10+03 5.14×10+03 8.449×10+00 9.60×10−02

7.000 4.04×10+03 4.44×10+03 4.90×10+03 8.400×10+00 9.72×10−02

8.000 3.80×10+03 4.18×10+03 4.61×10+03 8.340×10+00 9.59×10−02

9.000 3.58×10+03 3.93×10+03 4.32×10+03 8.276×10+00 9.56×10−02

10.000 3.34×10+03 3.68×10+03 4.04×10+03 8.211×10+00 9.47×10−02

Table 5.8: Reaction rates of 17O(p,γ)18F calculated using the Monte Carlo code, RatesMC [8]. The

recommended rate is the median of the sampled distribution; µ and σ are the parameters of a log-

normal distribution approximating the sampled distribution.
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Figure 5.11: (bottom panel)Comparison of the present total reaction rates of 17O(p,γ)18F with those

presented in Ref. [7]. All reaction rates and upper and lower limits were divided by the recommended

rates from Ref. [7]. (top panel) Comparison of the present total reaction rates of 17O(p,γ)18F with

those presented in Ref. [21]. All reaction rates and upper and lower limits were divided by the

recommended rates from Ref. [21]
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Figure 5.12: Comparison of the ratio of 17O(p,α)14N to 17O(p,γ)18F rates calculated in the present

work to those from Chafa et al. [21]

rate and the rate of Fox et al. [7]. In the temperature regions where the contribution of direct capture

dominates, the two reaction rates are in agreement, though the present rates have smaller uncertainties

than those of Ref. [7]. The present rates are again larger at high temperature because of the use of the

renormalized resonance strengths from Rolfs [34] for the high energy resonances.

Figure 5.12 shows a comparison of the ratio of reaction rates for the 17O(p,α)14N to the 17O(p,γ)18F

reaction, derived from the present work and from Chafa et al. [21]. There are several interesting fea-

tures to notice. First, the uncertainties on the present rate ratio are smaller at all temperatures than

those from Ref. [21]. This is a result of a more precise direct capture contribution and the inclusion

of more 17O(p,γ)18F resonances, along with a more reliable Monte Carlo method of reaction rate cal-

culations. Another feature is that the new ratio never falls below unity at low temperatures. A ratio

below unity is not ruled out by Chafa et al [21]. This finding is important for stellar nucleosynthesis

because it means that the 17O(p,α)14N rate is always stronger than the 17O(p,γ)18F rate. The present

ratio is higher at nova temperatures, including a factor of 1.5 greater at T = 0.2 GK, as a result of
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the smaller direct capture contribution to the 17O(p,γ)18F reaction rate. It is important to note that

the reduction in the present uncertainties, however, is far more important, because this will allow for

better constraint of classical nova simulations. There is also a small dip in the present ratio at the

highest temperatures as a result of the decrease in the 17O(p,γ)18F reaction rate seen in Fig. 5.11.

The new reaction rates derived in the present work will be submitted for publication in the near

future.
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6 Summary and Conclusion

Classical novae are explosive binary stellar systems with peak temperatures of T = 0.1 - 0.4 GK.

They involve the accretion of hydrogen rich material from a main sequence star onto the surface of a

small, dense white dwarf partner. Studies of the nova ejecta give information of both the underlying

white dwarf and the path of nucleosynthesis in these systems. Observed elemental abundances from

the ejecta serve as much needed constraints for the modeling of these explosions. Classical novae

are also thought to be the most bountiful source of 15N, 17O and perhaps 13C in the universe [18].

Short-lived 18F, which emits β-decay radiation, is also produced in novae and may be observable

when the envelope becomes transparent. These 511 keV γ-rays can be detected, providing more con-

straints for nova simulations. These explosive environments involve hundreds of nuclear reactions

that are accounted for when modeling the nucleosynthesis. Only a restricted number of these nuclear

reactions actually substantially affect nucleosynthesis in these environments. The 17O(p,γ)18F and

17O(p,α)14N reactions have an important effect on nucleosynthesis in classical novae, since they de-

termine the destruction of 17O and the production of 18F. For instance, the greater the 17O(p,γ)18F

rate, the higher the 18F abundance produced. The greater 17O(p,α)14N reaction, however, the lower

the relative abundance of 18F to CNOI elements produced. The quality of the reaction rates of these

two 17O + p reactions have been vastly improved as a result of the current work.

The Elab
r = 193 keV resonance in 17O(p,γ)18F has been the object of recent contention in the

literature with a disagreement in measured strengths presented by Fox et al. [18] of ωγpγ = (1.2 ±

0.2)×10−6 eV and Chafa et al. [21] of ωγpγ = (2.2 ± 0.4)×10−6 eV. The dominant contribution

to this reaction rate, however, comes from the direct capture process. The values in the published

literature for the direct capture cross section differ by a factor of two [6, 7]. A measurement of the

direct capture of 17O(p,γ)18F at energies of Elab
p < 500 keV has been presented in Chap. 4 and the



results have already been submitted for publication [28]. This experiment reached an energy of Ecm
p ≈

250 keV, just inside the Gamow peak for nova temperatures. The resulting direct capture S-factor of

S(E) = 4.6 ± 1.1 keV b is a factor of two lower than the original value of Rolfs [6] and agrees with

the calculated predictions of Fox et al. [7]. Experimental uncertainties (± 23%) of the direct capture

S-factor have been established for the first time. The improved uncertainty has a marked effect on the

final reaction rate, which is discussed in detail in Chap. 5.

For the competing 17O(p,α)14N reaction, the Elab
r = 193 keV resonance is the only notable con-

tributor to the reaction rate at nova conditions. This resonance was first measured by Chafa et al. [19].

A remeasurement of this resonance using anodized instead of the implanted targets of Ref. [19] is pre-

sented in Chap. 3 and this work has already been published in Ref. [27]. This resulted in a resonance

strength of ωγpα = (1.66 ± 0.17)×10−3 eV [27], which is in agreement with the measurement of Ref.

[19]. Subsequently, this resonance strength was remeasured using a completely different technique at

ORNL and their result also confirmed the original measurement of Ref. [19].

A new method for extrapolating experimental reaction rates to high stellar temperatures has been

presented in Chap. 2 and the results have been published in Refs. [15, 16]. This new method illumi-

nates some flaws of current matching procedures used in nuclear astrophysics and further explains the

shortcomings of the Gamow peak concept when applied to narrow resonances. It is shown that this

concept breaks down at high temperatures, which is precisely the region over which most laboratory

rates need to be extrapolated. This new procedure, based on the statistical distribution of fractional

rate contributions, provides a proper description of the energy burning region at all temperatures and

should replace the previous method for determining a matching temperature.

The dominant rate contributions at nova temperatures for both the 17O(p,α)14N reaction and

17O(p,γ)18F reaction have been successfully measured in the current work. These results have been

used in combination with a Monte Carlo code in order to estimate new reaction rates. The new rates

for 17O(p,γ)18F and 17O(p,α)14N are presented in Chap. 5. The (p,α) rate has been found to be sig-

nificantly higher at low temperatures compared to the results of Ref. [21] and the rate uncertainties in

the temperature range of interest for classical novae have been improved by a factor of ≈ 2. The (p,γ)

reaction rates have remarkably improved uncertainties compared to literature rates [7, 21].

Given these considerable improvements, the next obvious step will be to perform new hydrody-

123



namical nova simulations using the current 17O + p reaction rates. This will allow for more accurate

nucleosynthesis results, which should significantly affect the understanding of the destruction of 17O

and production of 18F in classical novae. Preparations for these simulations are underway and results

will be provided in the near future.
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A Appendix

A.1 Probability Density Function for the Spectroscopic Factor

Often it is the case that the only available literature data for the γ-ray or particle partial width of

a known nuclear level is an upper limit. It is not statistically correct to assume that the true value is

equally likely to be any result below the upper limit. Instead, recall from Eq. 1.25 that the particle

partial width can be found from the spectroscopic factor, S. The spectroscopic factor describes the

relative probability that a compound nucleus can be described by an individual single particle state

[1]. The spectroscopic factor is made up of the square of an amplitude which is proportional to a

matrix element of the nuclear Hamiltonian [8]. These matrix elements form a Gaussian probability

density function centered around zero. The Gaussian distribution for the matrix elements, M, has the

form

f(M) =
1√

2πσ2
exp

(

−M2

2σ2

)

. (A.1)

The probability density function for the spectroscopic factor, S ∝ M2, can be easily derived from the

Gaussian distribution of the nuclear matrix elements, M. For a Gaussian distribution centered around

zero, the mean of the distribution is ⟨M⟩ = 0 and the variance will be σ2 = ⟨M2⟩ − ⟨M⟩2 =

⟨M2⟩. Consider a change in variables from f(M)dM to g(S)dS. We have S = kM2, where k is a

proportionality constant. This gives dM = 1
2k

√
S
dS. Rewriting f(M) in terms of S gives the new

form

f(M)dM =
1√

2πσ2
exp

(

−M2

2σ2

)

dM =
C√
S

exp

(

− S

2kσ2

)

dS = g(S)dS. (A.2)

Substituting the known variance of the original Gaussian, the final function of S becomes

g(S) =
C√
S

exp

(

− S

2⟨S⟩

)

. (A.3)

This makes use of the identity ⟨S⟩ = k⟨M2⟩ and a constant, C. g(S) is a chi-squared distribution

with one degree of freedom, also known as the Porter-Thomas distribution. This is the functional
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Figure A.1: Histogram of measured proton spectroscopic factors in 24Mg. The solid line is a Porter-

Thomas fit to the data resulting in a distribution mean of ⟨S⟩ = 0.03. Data taken from Refs. [45, 46]

dependence of the spectroscopic factors for a given nucleus and exit channel. It is clear that this

distribution highly favors spectroscopic factors with very low values. These low values are the most

difficult to measure experimentally. This results in experimental data sets that are highly skewed

toward larger values of the mean. It is very important to develop an accurate procedure for describing

the distribution of spectroscopic factors, so that they may be properly sampled by the Monte Carlo

procedure when accounting for an unknown spectroscopic factor.

The rest of this section is dedicated to determining a Porter-Thomas fit to the known spectroscopic

factors for unbound levels in six different nuclei. The final goal is to determine the mean, ⟨S⟩, of a

Porter-Thomas distribution that may be used to randomly sample the proton spectroscopic factor of

an unknown level in 18F. Since there are not sufficient measured spectroscopic factor values available

for 18F, it is necessary to look to other nuclei. Mitchell et al. have done extensive studies on the proton

spectroscopic factors of 24Mg, 28Si, 30P, 32S, 36Ar, and 40Ca. These data sets will be fit in order to

accurately describe the distribution of proton spectroscopic factors for the levels in these nuclei and

to estimate a value for a given level in 18F.

Figures A.1 - A.6 display histograms of the proton spectroscopic factors for six different nuclei.
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Figure A.2: Histogram of measured proton spectroscopic factors in 28Si. The solid line is a Porter-

Thomas fit to the data resulting in a distribution mean of ⟨S⟩ = 0.03. Data taken from Refs. [47]
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Figure A.3: Histogram of measured proton spectroscopic factors in 30P. The solid line is a Porter-

Thomas fit to the data resulting in a distribution mean of ⟨S⟩ = 0.02. Data taken from Refs. [47, 48,

49]
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Figure A.4: Histogram of measured proton spectroscopic factors in 32S. The solid line is a Porter-

Thomas fit to the data resulting in a distribution mean of ⟨S⟩ = 0.006. Data taken from Refs. [50, 51]
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Figure A.5: Histogram of measured proton spectroscopic factors in 36Ar. The solid line is a Porter-

Thomas fit to the data resulting in a distribution mean of ⟨S⟩ = 0.03. Data taken from Refs. [52]
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Figure A.6: Histogram of measured proton spectroscopic factors in 40Ca. The solid line is a Porter-

Thomas fit to the data resulting in a distribution mean of ⟨S⟩ = 0.01. Data taken from Refs. [53]

Included in each plot is a Porter-Thomas fit to the spectroscopic factor data. This fit determines the

best value for the mean of the distribution describing these data. It is important to note that the

Porter-Thomas distribution describes the probability density function for a given nucleus and specific

set of quantum numbers. The data that were fit, however, constitute a combination of levels with

different orbital angular momenta, ℓ. The result is that the Porter-Thomas fits do not describe the above

data very accurately. Since there is not sufficient experimental data to separate by specific quantum

numbers, the current method is the best first approach for describing the proton spectroscopic factor

distributions in these six nuclei. The fits seem to describe the lower values of the proton spectroscopic

factor reasonably well, however.

There are still not sufficient data to describe the probability distribution of an unknown proton

spectroscopic factor through the exploration of individual nuclei. For this reason, the spectroscopic

factors for the six nuclei from Figs. A.1 - A.6 will be combined into a total set of 1127 proton

spectroscopic factors. For the purposes of combining the available data, the proton dimensionless

reduced widths will be used instead of the spectroscopic factors. The dimensionless reduced width,
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Figure A.7: Histogram of measured dimensionless reduced proton widths for unbound states in 24Mg,
28Si, 30P, 32S, 36Ar and 40Ca. The solid line is a least-squares Porter-Thomas fit to the data resulting

in a distribution mean of ⟨θ2
p⟩ = 0.0043.

θ2, may be calculated from the spectroscopic factor by the following equation from Ref. [1],

θ2 = C2Sθ2
sp = γ2

(

µR2

h̄

)

, (A.4)

where θ2
sp refers to the dimensionless single particle reduced width [4]; γ2 is the reduced width of the

level and is usually the value listed in the literature; µ is the reduced mass of the target and projectile

and R is the nuclear radius, with R = 1.25(A
1/3
t + A

1/3
p ) [4].

Figure A.7 displays a histogram of the combined dimensionless reduced proton widths for levels

from all six nuclei. The Porter-Thomas fit to the data resulted in a mean value of ⟨θ2⟩ = 0.0043. A

parallel work has found a similar value of ⟨θ2⟩ = 0.0045 [8]. This value of 0.0045 will be adopted

for the mean of the Porter-Thomas distribution describing the entire data set.

Another test of how accurately the data is described by a Porter-Thomas distribution is to nor-

malize each data point to its specific Porter-Thomas curve. The reduced widths will be collected into

groups sharing the same A and ℓ values. The dimensionless reduced widths in each of these small
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Figure A.8: Histogram of measured dimensionless reduced proton widths for unbound states in 24Mg,
28Si, 30P, 32S, 36Ar and 40Ca. Each θ2 value is divided by the local average of θ2

p for levels of the

same A and ℓ values. The solid line represents a Porter-Thomas distribution with mean of θ2

⟨θ2⟩ = 1.

groups will be averaged and each specific value will be divided by its local sample average. The data

will then be recombined, producing a larger data set with each point normalized to the mean of its

group of common quantum numbers. This results in a global mean of θ2

⟨θ2⟩ = 1. These normalized

data are plotted in figure A.8 and appear to be much more accurately described by a Porter-Thomas

distribution than the unnormalized data sets. Plots similar to Fig. A.8 are usually found in the liter-

ature for exactly this reason. The value of ⟨θ2
p⟩, however, cannot be determined by fitting θ2

⟨θ2⟩ = 1

and the purpose of this plot is simply to illustrate the fact that the Porter-Thomas distribution is an

accurate description of the distribution of dimensionless reduced widths.

A.2 Anodized Targets

The oxygen targets used for this project were made by oxidizing tantalum backings via anodization

using oxygen enriched water. Anodization is a well understood process, producing targets of high

stability and well defined stoichiometry. It involves dissociating water and combining the resultant
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O2− ions with ionized metal. The anodization process follows the chemical reaction [54]:

2Ta + 5H2O = Ta2O5 + 5H2. (A.5)

The procedure is to first apply a positive voltage to a Ta backing and to ground another Ta sheet

that is isolated from the target backing. These tantalum pieces are each fastened to either side of an

anodization chamber. The chamber used for the current work is shown in Fig. A.9. The chamber

allows for isolation of the two metal sheets and acts as a container for the volume of water which must

span the gap between the Ta sheets. The anodizing voltage will pull electrons off the Ta, forming Ta5+

ions, and will also dissociate the water. This will supply the O2− ions. The Ta5+ and O2− ions will

combine to form a well defined Ta2O5 compound [24]. KI crystals should be added to the water prior

to anodization in order to facilitate the flow of charged ions and electrons through the solution. The

solution should consist of 1 mg of KI per 0.5 mL of water [24].

The thickness of the target is proportional to the anodization voltage chosen. Figure A.10 shows

the linear dependence of target thickness on anodization voltage. These data are for the 151 keV

resonance in 18O(p,γ)19F and were measured with six 18O enriched targets prepared by Chris Fox.

The fit to the data in Fig. A.10 was used to determine the 30 V anodization voltage of the 17O target

from Chap. 4. The target thickness saturates very quickly and an anodization time of 2 minutes was

chosen to be certain that saturation was reached.

Once an anodization voltage is chosen, the water is inserted into the anodization chamber via a

syringe. This fills the gap between the target backing (anode) and the diode metal. After application

of the anodization voltage, the target backing is removed from the chamber and should have a very

clear oxygen deposition on the surface. The actual color is voltage dependent, but all targets are very

bright and uniform. It is important to ensure that the anodization chamber is completely full of water,

otherwise there may be non-anodized portions of the target area. These will appear as holes in the

oxygen coloring and will result in nonuniform, unusable targets. These nonuniform targets can be

fixed by immediately rotating the target backing and re-anodizing it over the same surface. Since the

target thickness is only a function of anodization voltage, re-anodization should result in a uniform

target as long as the voltage is exactly the same as during the first anodization. Great care should be
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Figure A.9: Anodization chamber used for the production of all of the enriched oxygen targets from

the current work.

taken when removing the target backing in order to allow for efficient recollection of the expensive

isotopically enriched water.

133



0 50 100 150

Anodization Voltage (V)

0

5

10

15

20

25

30

35

40

45

50

T
ar

g
et

 T
h
ic

k
n
es

s 
(k

eV
) y = 1.5347 + 0.26565x

Figure A.10: Target thicknesses of 18O targets made with a range of anodizing voltages. The targets

were made and tested by Chris Fox using the Elab
r = 151 keV resonance 18O(p,γ)19F reaction. The

data were adopted from his run book.
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